BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26636974)

  • 1. Integrating Sphere Finger-Photoplethysmography: Preliminary Investigation towards Practical Non-Invasive Measurement of Blood Constituents.
    Yamakoshi T; Lee J; Matsumura K; Yamakoshi Y; Rolfe P; Kiyohara D; Yamakoshi K
    PLoS One; 2015; 10(12):e0143506. PubMed ID: 26636974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Side-scattered finger-photoplethysmography: experimental investigations toward practical noninvasive measurement of blood glucose.
    Yamakoshi Y; Matsumura K; Yamakoshi T; Lee J; Rolfe P; Kato Y; Shimizu K; Yamakoshi KI
    J Biomed Opt; 2017 Jun; 22(6):67001. PubMed ID: 28636064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between Speckle Plethysmography and Photoplethysmography during Cold Pressor Test Referenced to Finger Arterial Pressure.
    Herranz Olazabal J; Lorato I; Kling J; Verhoeven M; Wieringa F; Van Hoof C; Verkruijsse W; Hermeling E
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On non-invasive measurement of gastric motility from finger photoplethysmographic signal.
    Yacin SM; Manivannan M; Chakravarthy VS
    Ann Biomed Eng; 2010 Dec; 38(12):3744-55. PubMed ID: 20614246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion.
    Lee J; Matsumura K; Yamakoshi K; Rolfe P; Tanaka S; Yamakoshi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1724-7. PubMed ID: 24110039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation.
    Zahedi E; Jaafar R; Ali MA; Mohamed AL; Maskon O
    Physiol Meas; 2008 May; 29(5):625-37. PubMed ID: 18460764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of photoplethysmographic signals and blood oxygen saturation values obtained from human splanchnic organs using a fiber optic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    J Clin Monit Comput; 2011 Aug; 25(4):245-55. PubMed ID: 21953382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation.
    Budidha K; Kyriacou PA
    Physiol Meas; 2014 Feb; 35(2):111-28. PubMed ID: 24399082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiration-induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography.
    Nitzan M; Faib I; Friedman H
    J Biomed Opt; 2006; 11(4):040506. PubMed ID: 16965128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of photoplethysmogram measured from wrist and finger and the effect of measurement location on pulse arrival time.
    Rajala S; Lindholm H; Taipalus T
    Physiol Meas; 2018 Aug; 39(7):075010. PubMed ID: 29794339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Vascular Depth-Dependent Changes in Multi-Wavelength PPG Signals Due to Contact Force.
    Lambert Cause J; Solé Morillo Á; da Silva B; García-Naranjo JC; Stiens J
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the origin of remote PPG signals in visible light and infrared.
    Moço AV; Stuijk S; de Haan G
    Sci Rep; 2018 May; 8(1):8501. PubMed ID: 29855610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry.
    Humphreys K; Ward T; Markham C
    Rev Sci Instrum; 2007 Apr; 78(4):044304. PubMed ID: 17477684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contactless and continuous monitoring of heart rate based on photoplethysmography on a mattress.
    Wong MY; Pickwell-MacPherson E; Zhang YT
    Physiol Meas; 2010 Jul; 31(7):1065-74. PubMed ID: 20585149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe.
    Abdollahi Z; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1728-31. PubMed ID: 24110040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo investigation of photoplethysmographic signals and preliminary pulse oximetry estimation from the bowel using a new fiberoptic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    Anesth Analg; 2011 May; 112(5):1104-9. PubMed ID: 21346164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel feature ranking algorithm for biometric recognition with PPG signals.
    Reşit Kavsaoğlu A; Polat K; Recep Bozkurt M
    Comput Biol Med; 2014 Jun; 49():1-14. PubMed ID: 24705467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects.
    Nilsson L; Goscinski T; Kalman S; Lindberg LG; Johansson A
    Acta Anaesthesiol Scand; 2007 Oct; 51(9):1250-7. PubMed ID: 17711563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.