These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 26637046)

  • 1. Sampangine (a Copyrine Alkaloid) Exerts Biological Activities through Cellular Redox Cycling of Its Quinone and Semiquinone Intermediates.
    Mahdi F; Morgan JB; Liu W; Agarwal AK; Jekabsons MB; Liu Y; Zhou YD; Nagle DG
    J Nat Prod; 2015 Dec; 78(12):3018-23. PubMed ID: 26637046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of apoptosis by the plant alkaloid sampangine in human HL-60 leukemia cells is mediated by reactive oxygen species.
    Kluza J; Mazinghien R; Degardin K; Lansiaux A; Bailly C
    Eur J Pharmacol; 2005 Nov; 525(1-3):32-40. PubMed ID: 16289142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampangine inhibits heme biosynthesis in both yeast and human.
    Huang Z; Chen K; Xu T; Zhang J; Li Y; Li W; Agarwal AK; Clark AM; Phillips JD; Pan X
    Eukaryot Cell; 2011 Nov; 10(11):1536-44. PubMed ID: 21908598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine.
    Agarwal AK; Xu T; Jacob MR; Feng Q; Lorenz MC; Walker LA; Clark AM
    Eukaryot Cell; 2008 Feb; 7(2):387-400. PubMed ID: 18156292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apoptosis induced by the alkaloid sampangine in HL-60 leukemia cells: correlation between the effects on the cell cycle progression and changes of mitochondrial potential.
    Kluza J; Clark AM; Bailly C
    Ann N Y Acad Sci; 2003 Dec; 1010():331-4. PubMed ID: 15033745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation of mitochondrial functional activity by quinones.
    Krylova NG; Kulahava TA; Cheschevik VT; Dremza IK; Semenkova GN; Zavodnik IB
    Physiol Int; 2016 Dec; 103(4):439-458. PubMed ID: 28229632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox cycling of 2-(x'-mono, -di, -trichlorophenyl)- 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.
    McLean MR; Twaroski TP; Robertson LW
    Arch Biochem Biophys; 2000 Apr; 376(2):449-55. PubMed ID: 10775433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones.
    Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K
    Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds.
    Wallace MA; Bailey S; Fukuto JM; Valentine JS; Gralla EB
    Chem Res Toxicol; 2005 Aug; 18(8):1279-86. PubMed ID: 16097801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae.
    Quek NC; Matthews JH; Bloor SJ; Jones DA; Bircham PW; Heathcott RW; Atkinson PH
    Mol Biosyst; 2013 Aug; 9(8):2125-33. PubMed ID: 23715404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain.
    Markevich NI; Hoek JB
    Biochim Biophys Acta; 2015; 1847(6-7):656-79. PubMed ID: 25868872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.
    Valavanidis A; Fiotakis K; Bakeas E; Vlahogianni T
    Redox Rep; 2005; 10(1):37-51. PubMed ID: 15829110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor cell death induced by the inhibition of mitochondrial electron transport: the effect of 3-hydroxybakuchiol.
    Jaña F; Faini F; Lapier M; Pavani M; Kemmerling U; Morello A; Maya JD; Jara J; Parra E; Ferreira J
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):356-64. PubMed ID: 23777606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the major metabolite of sampangine in rats.
    Orabi KY; Walker LA; Clark AM; Hufford CD
    J Nat Prod; 2000 May; 63(5):685-7. PubMed ID: 10843589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hetero analogues of the antimicrobial alkaloids cleistopholine and sampangine.
    Mink K; Bracher F
    Arch Pharm (Weinheim); 2007 Aug; 340(8):429-33. PubMed ID: 17628034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated quinone-dependent redox cycling via plasma membrane electron transport: A sensitive cellular assay for NQO1.
    Tan AS; Berridge MV
    Free Radic Biol Med; 2010 Feb; 48(3):421-9. PubMed ID: 19932748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling of quinones reduced by ascorbic acid.
    Njus D; Asmaro K; Li G; Palomino E
    Chem Biol Interact; 2023 Mar; 373():110397. PubMed ID: 36764370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide production during ischemia-reperfusion in the perfused rat heart: a comparison of two methods of measurement.
    Näpänkangas JP; Liimatta EV; Joensuu P; Bergmann U; Ylitalo K; Hassinen IE
    J Mol Cell Cardiol; 2012 Dec; 53(6):906-15. PubMed ID: 23036824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.