BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 26637059)

  • 1. Overexpression of miR-26b-5p regulates the cell cycle by targeting CCND2 in GC-2 cells under exposure to extremely low frequency electromagnetic fields.
    Liu Y; Liu WB; Liu KJ; Ao L; Cao J; Zhong JL; Liu JY
    Cell Cycle; 2016; 15(3):357-67. PubMed ID: 26637059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extremely Low-Frequency Electromagnetic Fields Affect the miRNA-Mediated Regulation of Signaling Pathways in the GC-2 Cell Line.
    Liu Y; Liu WB; Liu KJ; Ao L; Cao J; Zhong JL; Liu JY
    PLoS One; 2015; 10(10):e0139949. PubMed ID: 26439850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely low-frequency electromagnetic fields cause G1 phase arrest through the activation of the ATM-Chk2-p21 pathway.
    Huang CY; Chang CW; Chen CR; Chuang CY; Chiang CS; Shu WY; Fan TC; Hsu IC
    PLoS One; 2014; 9(8):e104732. PubMed ID: 25111195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells.
    Duan W; Liu C; Zhang L; He M; Xu S; Chen C; Pi H; Gao P; Zhang Y; Zhong M; Yu Z; Zhou Z
    Radiat Res; 2015 Mar; 183(3):305-14. PubMed ID: 25688995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 50 Hz Extremely Low-Frequency Electromagnetic Fields on the DNA Methylation and DNA Methyltransferases in Mouse Spermatocyte-Derived Cell Line GC-2.
    Liu Y; Liu WB; Liu KJ; Ao L; Zhong JL; Cao J; Liu JY
    Biomed Res Int; 2015; 2015():237183. PubMed ID: 26339596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2.
    Li YL; Wang J; Zhang CY; Shen YQ; Wang HM; Ding L; Gu YC; Lou JT; Zhao XT; Ma ZL; Jin YX
    Oncotarget; 2016 Sep; 7(37):59287-59298. PubMed ID: 27494902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct epidermal keratinocytes respond to extremely low-frequency electromagnetic fields differently.
    Huang CY; Chuang CY; Shu WY; Chang CW; Chen CR; Fan TC; Hsu IC
    PLoS One; 2014; 9(11):e113424. PubMed ID: 25409520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up-regulation of miR-144 and miR-375 in the human gastric cancer cell line following the exposure to extremely low-frequency electromagnetic fields.
    Aalami Zavareh F; Abdi S; Entezari M
    Int J Radiat Biol; 2021; 97(9):1324-1332. PubMed ID: 34125651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LncRNA HOTAIR Regulates CCND1 and CCND2 Expression by Sponging miR-206 in Ovarian Cancer.
    Chang L; Guo R; Yuan Z; Shi H; Zhang D
    Cell Physiol Biochem; 2018; 49(4):1289-1303. PubMed ID: 30205383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miRNA expression profile is altered differentially in the rat brain compared to blood after experimental exposure to 50 Hz and 1 mT electromagnetic field.
    Erdal ME; Yılmaz SG; Gürgül S; Uzun C; Derici D; Erdal N
    Prog Biophys Mol Biol; 2018 Jan; 132():35-42. PubMed ID: 28782562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LncRNA GAS8-AS1 suppresses papillary thyroid carcinoma cell growth through the miR-135b-5p/CCND2 axis.
    Chen N; Yin D; Lun B; Guo X
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30429236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-26a regulates mouse hepatocyte proliferation via directly targeting the 3' untranslated region of CCND2 and CCNE2.
    Zhou J; Ju WQ; Yuan XP; Zhu XF; Wang DP; He XS
    Hepatobiliary Pancreat Dis Int; 2016 Feb; 15(1):65-72. PubMed ID: 26818545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Developmental Neurotoxicity Following Chronic Exposure to 50 Hz Extremely Low-Frequency Electromagnetic Fields in Primary Rat Cortical Cultures.
    de Groot MW; van Kleef RG; de Groot A; Westerink RH
    Toxicol Sci; 2016 Feb; 149(2):433-40. PubMed ID: 26572663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the Effects of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields With Different Values on Learning, Memory, Anxiety, and β-amyloid Deposition in Adult Rats.
    Faraji N; Salehi I; Alizadeh A; Pourgholaminejad A; Komaki A; Azandaryani MT; Sadeghian R; Golipoor Z
    Basic Clin Neurosci; 2021; 12(6):849-860. PubMed ID: 35693151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of exposure to extremely low frequency electromagnetic fields on hippocampal long-term potentiation in hippocampal CA1 region.
    Zheng Y; Cheng J; Dong L; Ma X; Kong Q
    Biochem Biophys Res Commun; 2019 Sep; 517(3):513-519. PubMed ID: 31376941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely low-frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells.
    Ma Q; Deng P; Zhu G; Liu C; Zhang L; Zhou Z; Luo X; Li M; Zhong M; Yu Z; Chen C; Zhang Y
    PLoS One; 2014; 9(3):e90041. PubMed ID: 24595264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MiR-188-5p inhibits cell proliferation and migration in ovarian cancer via competing for CCND2 with ELAVL1.
    Zhang H; Yuan N; Che H; Cheng X
    Cell Mol Biol (Noisy-le-grand); 2023 Mar; 69(3):69-74. PubMed ID: 37300687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells.
    Palagani A; Op de Beeck K; Naulaerts S; Diddens J; Sekhar Chirumamilla C; Van Camp G; Laukens K; Heyninck K; Gerlo S; Mestdagh P; Vandesompele J; Berghe WV
    PLoS One; 2014; 9(12):e113842. PubMed ID: 25474406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1.
    Ma Q; Chen C; Deng P; Zhu G; Lin M; Zhang L; Xu S; He M; Lu Y; Duan W; Pi H; Cao Z; Pei L; Li M; Liu C; Zhang Y; Zhong M; Zhou Z; Yu Z
    PLoS One; 2016; 11(3):e0150923. PubMed ID: 26950212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E
    Sun Y; Shi Z; Wang Y; Tang C; Liao Y; Yang C; Cai P
    Int J Radiat Biol; 2018 Dec; 94(12):1159-1166. PubMed ID: 30307357
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.