BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26637184)

  • 41. Changes in the expression and localization of the paranodal protein Caspr on axons in chronic multiple sclerosis.
    Wolswijk G; Balesar R
    Brain; 2003 Jul; 126(Pt 7):1638-49. PubMed ID: 12805111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sodium channel expression within chronic multiple sclerosis plaques.
    Black JA; Newcombe J; Trapp BD; Waxman SG
    J Neuropathol Exp Neurol; 2007 Sep; 66(9):828-37. PubMed ID: 17805013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contribution of astrocyte-derived IL-15 to CD8 T cell effector functions in multiple sclerosis.
    Saikali P; Antel JP; Pittet CL; Newcombe J; Arbour N
    J Immunol; 2010 Nov; 185(10):5693-703. PubMed ID: 20926794
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis.
    Bradford CM; Ramos I; Cross AK; Haddock G; McQuaid S; Nicholas AP; Woodroofe MN
    J Neuroimmunol; 2014 Aug; 273(1-2):85-95. PubMed ID: 24907905
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insulin-like growth factor binding proteins: regulation in chronic active plaques in multiple sclerosis and functional analysis of glial cells.
    Chesik D; De Keyser J; Glazenburg L; Wilczak N
    Eur J Neurosci; 2006 Sep; 24(6):1645-52. PubMed ID: 17004928
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A role for hypertrophic astrocytes and astrocyte precursors in a case of rapidly progressive multiple sclerosis.
    Morcos Y; Lee SM; Levin MC
    Mult Scler; 2003 Aug; 9(4):332-41. PubMed ID: 12926837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activities of key glycolytic enzymes in the brains of patients with Alzheimer's disease.
    Bigl M; Brückner MK; Arendt T; Bigl V; Eschrich K
    J Neural Transm (Vienna); 1999; 106(5-6):499-511. PubMed ID: 10443553
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.
    Arrabal S; Lucena MA; Canduela MJ; Ramos-Uriarte A; Rivera P; Serrano A; Pavón FJ; Decara J; Vargas A; Baixeras E; Martín-Rufián M; Márquez J; Fernández-Llébrez P; De Roos B; Grandes P; Rodríguez de Fonseca F; Suárez J
    PLoS One; 2015; 10(12):e0145244. PubMed ID: 26671069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The evidence for primary axonal loss in multiple sclerosis].
    Anthony DC; Hughes P; Perry VH
    Rev Neurol; 2000 Jun 16-30; 30(12):1203-8. PubMed ID: 10935251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis.
    Cambron M; D'Haeseleer M; Laureys G; Clinckers R; Debruyne J; De Keyser J
    J Cereb Blood Flow Metab; 2012 Mar; 32(3):413-24. PubMed ID: 22214904
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions.
    Van Doorn R; Van Horssen J; Verzijl D; Witte M; Ronken E; Van Het Hof B; Lakeman K; Dijkstra CD; Van Der Valk P; Reijerkerk A; Alewijnse AE; Peters SL; De Vries HE
    Glia; 2010 Sep; 58(12):1465-76. PubMed ID: 20648639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment.
    Krumbholz M; Theil D; Cepok S; Hemmer B; Kivisäkk P; Ransohoff RM; Hofbauer M; Farina C; Derfuss T; Hartle C; Newcombe J; Hohlfeld R; Meinl E
    Brain; 2006 Jan; 129(Pt 1):200-11. PubMed ID: 16280350
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brain glucose metabolism in an animal model of depression.
    Detka J; Kurek A; Kucharczyk M; Głombik K; Basta-Kaim A; Kubera M; Lasoń W; Budziszewska B
    Neuroscience; 2015 Jun; 295():198-208. PubMed ID: 25819664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oligodendrocyte gap junction loss and disconnection from reactive astrocytes in multiple sclerosis gray matter.
    Markoullis K; Sargiannidou I; Schiza N; Roncaroli F; Reynolds R; Kleopa KA
    J Neuropathol Exp Neurol; 2014 Sep; 73(9):865-79. PubMed ID: 25101702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple sclerosis: expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque.
    Raine CS; Bonetti B; Cannella B
    Rev Neurol (Paris); 1998 Sep; 154(8-9):577-85. PubMed ID: 9809372
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Association of Parkinson disease-related protein PINK1 with Alzheimer disease and multiple sclerosis brain lesions.
    Wilhelmus MM; van der Pol SM; Jansen Q; Witte ME; van der Valk P; Rozemuller AJ; Drukarch B; de Vries HE; Van Horssen J
    Free Radic Biol Med; 2011 Feb; 50(3):469-76. PubMed ID: 21145388
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Absence of aquaporin-4 expression in lesions of neuromyelitis optica but increased expression in multiple sclerosis lesions and normal-appearing white matter.
    Sinclair C; Kirk J; Herron B; Fitzgerald U; McQuaid S
    Acta Neuropathol; 2007 Feb; 113(2):187-94. PubMed ID: 17143632
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions.
    Brana C; Frossard MJ; Pescini Gobert R; Martinier N; Boschert U; Seabrook TJ
    Neuropathol Appl Neurobiol; 2014 Aug; 40(5):564-78. PubMed ID: 23551178
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential lowering by manganese treatment of activities of glycolytic and tricarboxylic acid (TCA) cycle enzymes investigated in neuroblastoma and astrocytoma cells is associated with manganese-induced cell death.
    Malthankar GV; White BK; Bhushan A; Daniels CK; Rodnick KJ; Lai JC
    Neurochem Res; 2004 Apr; 29(4):709-17. PubMed ID: 15098932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.