These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26637262)

  • 1. Quantum Oscillations of the Nanoscale Structural Inhomogeneities of the Domain Wall in Magnetic Bubble.
    Shevchenko AB; Barabash MY
    Nanoscale Res Lett; 2015 Dec; 10(1):470. PubMed ID: 26637262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Oscillations of Interacting Nanoscale Structural Inhomogeneities in a Domain Wall of Magnetic Stripe Domain.
    Shevchenko A; Barabash M
    Nanoscale Res Lett; 2016 Dec; 11(1):473. PubMed ID: 27783374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general formalism for the determination of the effective mass of the nanoscale structural inhomogeneities of the domain wall in uniaxial ferromagnets.
    Shevchenko A; Barabash M
    Nanoscale Res Lett; 2015; 10():159. PubMed ID: 25983671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain.
    Chen G; N'Diaye AT; Kang SP; Kwon HY; Won C; Wu Y; Qiu ZQ; Schmid AK
    Nat Commun; 2015 Mar; 6():6598. PubMed ID: 25798953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum to: Quantum Oscillations of Interacting Nanoscale Structural Inhomogeneities in a Domain Wall of Magnetic Stripe Domain.
    Shevchenko A; Barabash M
    Nanoscale Res Lett; 2017 Dec; 12(1):173. PubMed ID: 28274092
    [No Abstract]   [Full Text] [Related]  

  • 6. Magnetic Bloch oscillations and domain wall dynamics in a near-Ising ferromagnetic chain.
    Hansen UB; Syljuåsen OF; Jensen J; Schäffer TK; Andersen CR; Boehm M; Rodriguez-Rivera JA; Christensen NB; Lefmann K
    Nat Commun; 2022 May; 13(1):2547. PubMed ID: 35538071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced film thickness for Néel wall in soft magnetic film by introducing strong magnetocrystalline anisotropy.
    Xu F; Wang T; Ma T; Wang Y; Zhu S; Li F
    Sci Rep; 2016 Jan; 6():20140. PubMed ID: 26821614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferroelectricity of domain walls in rare earth iron garnet films.
    Popov AI; Zvezdin KA; Gareeva ZV; Mazhitova FA; Vakhitov RM; Yumaguzin AR; Zvezdin AK
    J Phys Condens Matter; 2016 Nov; 28(45):456004. PubMed ID: 27620369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires.
    Hertel R
    J Phys Condens Matter; 2016 Dec; 28(48):483002. PubMed ID: 27701143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bloch point in uniaxial ferromagnets as a quantum mechanical object.
    Shevchenko AB; Barabash MY
    Nanoscale Res Lett; 2014 Mar; 9(1):132. PubMed ID: 24646347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.
    Doinikov AA; Combriat T; Thibault P; Marmottant P
    Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory magnetic anisotropy originating from quantum well states in Fe films.
    Li J; Przybylski M; Yildiz F; Ma XD; Wu YZ
    Phys Rev Lett; 2009 May; 102(20):207206. PubMed ID: 19519071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achievement of Diverse Domain Structures in Soft Magnetic Thin Film through Adjusting Intrinsic Magnetocrystalline Anisotropy.
    Jiao J; Wang T; Ma T; Wang Y; Li F
    Nanoscale Res Lett; 2017 Dec; 12(1):21. PubMed ID: 28058653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciting Molecules Close to the Rotational Quantum Resonance: Anderson Wall and Rotational Bloch Oscillations.
    Floß J; Averbukh ISh
    J Phys Chem A; 2016 May; 120(19):3206-17. PubMed ID: 26799273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant supermagnonic Bloch point velocities in cylindrical ferromagnetic nanowires.
    Tejo F; Fernandez-Roldan JA; Guslienko KY; Otxoa RM; Chubykalo-Fesenko O
    Nanoscale; 2024 Jun; 16(22):10737-10744. PubMed ID: 38721645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the magnetic field on the nucleation and properties of 0-degree domain walls in uniaxial films with inhomogeneous magnetoelectric interaction.
    Vakhitov RM; Nizyamova AR; Solonetsky RV
    J Phys Condens Matter; 2024 Feb; 36(19):. PubMed ID: 38316061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of magnetic domain walls using electron magnetic chiral dichroism.
    Che RC; Liang CY; He X; Liu HH; Duan XF
    Sci Technol Adv Mater; 2011 Apr; 12(2):025004. PubMed ID: 27877386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinning of a ferroelectric Bloch wall at a paraelectric layer.
    Stepkova V; Hlinka J
    Beilstein J Nanotechnol; 2018; 9():2356-2360. PubMed ID: 30202704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged magnetic domain walls as observed in nanostructured thin films: dependence on both film thickness and anisotropy.
    Favieres C; Vergara J; Madurga V
    J Phys Condens Matter; 2013 Feb; 25(6):066002. PubMed ID: 23306056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices.
    Krishna Kumar R; Chen X; Auton GH; Mishchenko A; Bandurin DA; Morozov SV; Cao Y; Khestanova E; Ben Shalom M; Kretinin AV; Novoselov KS; Eaves L; Grigorieva IV; Ponomarenko LA; Fal'ko VI; Geim AK
    Science; 2017 Jul; 357(6347):181-184. PubMed ID: 28706067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.