These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 26637362)
1. SSR Markers Associated with Proline in Drought Tolerant Wheat Germplasm. Iqbal MJ; Maqsood Y; Abdin ZU; Manzoor A; Hassan M; Jamil A Appl Biochem Biotechnol; 2016 Mar; 178(5):1042-52. PubMed ID: 26637362 [TBL] [Abstract][Full Text] [Related]
2. Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Hong-Bo S; Xiao-Yan C; Li-Ye C; Xi-Ning Z; Gang W; Yong-Bing Y; Chang-Xing Z; Zan-Min H Colloids Surf B Biointerfaces; 2006 Nov; 53(1):113-9. PubMed ID: 16979325 [TBL] [Abstract][Full Text] [Related]
3. Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Devi R; Kaur N; Gupta AK Indian J Biochem Biophys; 2012 Aug; 49(4):257-65. PubMed ID: 23077787 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Hu L; Lv X; Zhang Y; Du W; Fan S; Kong L Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408761 [TBL] [Abstract][Full Text] [Related]
5. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. Du L; Huang X; Ding L; Wang Z; Tang D; Chen B; Ao L; Liu Y; Kang Z; Mao H New Phytol; 2023 Jan; 237(1):232-250. PubMed ID: 36264565 [TBL] [Abstract][Full Text] [Related]
6. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. Li N; Zhang S; Liang Y; Qi Y; Chen J; Zhu W; Zhang L J Proteomics; 2018 Feb; 172():122-142. PubMed ID: 28982538 [TBL] [Abstract][Full Text] [Related]
7. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789 [TBL] [Abstract][Full Text] [Related]
8. Molecular and agro-morphological diversity assessment of some bread wheat genotypes and their crosses for drought tolerance. Ezzat MA; Alotaibi NM; Soliman SS; Sultan M; Kamara MM; Abd El-Moneim D; Felemban WF; Al Aboud NM; Aljabri M; Abdelmalek IB; Mansour E; Hassanin AA PeerJ; 2024; 12():e18104. PubMed ID: 39346037 [TBL] [Abstract][Full Text] [Related]
9. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. HongBo S; ZongSuo L; MingAn S Colloids Surf B Biointerfaces; 2005 Sep; 45(1):7-13. PubMed ID: 16102947 [TBL] [Abstract][Full Text] [Related]
10. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. Khan N; Bano A PLoS One; 2019; 14(9):e0222302. PubMed ID: 31513660 [TBL] [Abstract][Full Text] [Related]
11. A Proteomics Approach to Discover Drought Tolerance Proteins in Wheat Pollen Grain at Meiosis Stage. Fotovat R; Alikhani M; Valizadeh M; Mirzaei M; Salekdeh GH Protein Pept Lett; 2017; 24(1):26-36. PubMed ID: 27908260 [TBL] [Abstract][Full Text] [Related]
12. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Rong W; Qi L; Wang A; Ye X; Du L; Liang H; Xin Z; Zhang Z Plant Biotechnol J; 2014 May; 12(4):468-79. PubMed ID: 24393105 [TBL] [Abstract][Full Text] [Related]
13. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat. Tomar RS; Tiwari S; Vinod ; Naik BK; Chand S; Deshmukh R; Mallick N; Singh S; Singh NK; Tomar SM PLoS One; 2016; 11(6):e0156528. PubMed ID: 27280445 [TBL] [Abstract][Full Text] [Related]
14. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Hongbo S; Zongsuo L; Mingan S Colloids Surf B Biointerfaces; 2006 Feb; 47(2):132-9. PubMed ID: 16413760 [TBL] [Abstract][Full Text] [Related]
15. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition. Barakat MN; Saleh M; Al-Doss AA; Moustafa KA; Elshafei AA; Al-Qurainy FH Acta Biol Hung; 2015 Mar; 66(1):93-102. PubMed ID: 25740441 [TBL] [Abstract][Full Text] [Related]
16. Physiological and biochemical responses of two spring wheat genotypes to non-hydraulic root-to-shoot signalling of partial and full root-zone drought stress. Batool A; Akram NA; Cheng ZG; Lv GC; Ashraf M; Afzal M; Xiong JL; Wang JY; Xiong YC Plant Physiol Biochem; 2019 Jun; 139():11-20. PubMed ID: 30875531 [TBL] [Abstract][Full Text] [Related]
17. Physiological and antioxidant responses of synthetic hexaploid wheat germplasm under drought. Mokhtari N; Majidi MM; Mirlohi A BMC Plant Biol; 2024 Aug; 24(1):747. PubMed ID: 39098916 [TBL] [Abstract][Full Text] [Related]
18. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Jiménez S; Dridi J; Gutiérrez D; Moret D; Irigoyen JJ; Moreno MA; Gogorcena Y Tree Physiol; 2013 Oct; 33(10):1061-75. PubMed ID: 24162335 [TBL] [Abstract][Full Text] [Related]
19. A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress. Chen T; Li W; Hu X; Guo J; Liu A; Zhang B Plant Cell Physiol; 2015 May; 56(5):917-29. PubMed ID: 25657343 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Ergen NZ; Thimmapuram J; Bohnert HJ; Budak H Funct Integr Genomics; 2009 Aug; 9(3):377-96. PubMed ID: 19330365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]