These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 26637424)
1. Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture. Neunstoecklin B; Villiger TK; Lucas E; Stettler M; Broly H; Morbidelli M; Soos M Appl Microbiol Biotechnol; 2016 Apr; 100(8):3489-98. PubMed ID: 26637424 [TBL] [Abstract][Full Text] [Related]
2. Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture. Neunstoecklin B; Stettler M; Solacroup T; Broly H; Morbidelli M; Soos M J Biotechnol; 2015 Jan; 194():100-9. PubMed ID: 25529344 [TBL] [Abstract][Full Text] [Related]
3. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium. Hesse F; Ebel M; Konisch N; Sterlinski R; Kessler W; Wagner R Biotechnol Prog; 2003; 19(3):833-43. PubMed ID: 12790647 [TBL] [Abstract][Full Text] [Related]
4. Minimizing hydrodynamic stress in mammalian cell culture through the lobed Taylor-Couette bioreactor. Sorg R; Tanzeglock T; Soos M; Morbidelli M; Périlleux A; Solacroup T; Broly H Biotechnol J; 2011 Dec; 6(12):1504-15. PubMed ID: 21766459 [TBL] [Abstract][Full Text] [Related]
5. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Sousa MF; Silva MM; Giroux D; Hashimura Y; Wesselschmidt R; Lee B; Roldão A; Carrondo MJ; Alves PM; Serra M Biotechnol Prog; 2015; 31(6):1600-12. PubMed ID: 26289142 [TBL] [Abstract][Full Text] [Related]
7. Development of a Scale-Down Model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions. Sieck JB; Cordes T; Budach WE; Rhiel MH; Suemeghy Z; Leist C; Villiger TK; Morbidelli M; Soos M J Biotechnol; 2013 Mar; 164(1):41-9. PubMed ID: 23228731 [TBL] [Abstract][Full Text] [Related]
8. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics. Johnson C; Natarajan V; Antoniou C Biotechnol Prog; 2014; 30(3):760-4. PubMed ID: 24616386 [TBL] [Abstract][Full Text] [Related]
9. Scale-up of virus-like particles production: effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity. Maranga L; Cunha A; Clemente J; Cruz P; Carrondo MJ J Biotechnol; 2004 Jan; 107(1):55-64. PubMed ID: 14687971 [TBL] [Abstract][Full Text] [Related]
10. Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Fernández Sevilla JM; Cerón García MC; Sánchez Mirón A; Belarbi el H; García Camacho F; Molina Grima E Biotechnol Prog; 2004; 20(3):728-36. PubMed ID: 15176875 [TBL] [Abstract][Full Text] [Related]
11. An in-silico analysis of hydrodynamics and gas mass transfer characteristics in scale-down models for mammalian cell cultures. Anand A; McCahill M; Thomas J; Sood A; Kinross J; Dasgupta A; Rajendran A J Biotechnol; 2024 Jun; 388():96-106. PubMed ID: 38642816 [TBL] [Abstract][Full Text] [Related]
12. Experimental study of a ceramic microsparging aeration system in a pilot-scale animal cell culture. Nehring D; Czermak P; Vorlop J; Lübben H Biotechnol Prog; 2004; 20(6):1710-7. PubMed ID: 15575703 [TBL] [Abstract][Full Text] [Related]
13. Design of a tubular loop bioreactor for scale-up and scale-down of fermentation processes. Papagianni M; Mattey M; Kristiansen B Biotechnol Prog; 2003; 19(5):1498-504. PubMed ID: 14524711 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. López MC; Sánchez Edel R; López JL; Fernández FG; Sevilla JM; Rivas J; Guerrero MG; Grima EM J Biotechnol; 2006 May; 123(3):329-42. PubMed ID: 16406158 [TBL] [Abstract][Full Text] [Related]
15. Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture. Yang JD; Lu C; Stasny B; Henley J; Guinto W; Gonzalez C; Gleason J; Fung M; Collopy B; Benjamino M; Gangi J; Hanson M; Ille E Biotechnol Bioeng; 2007 Sep; 98(1):141-54. PubMed ID: 17657776 [TBL] [Abstract][Full Text] [Related]
16. Adaptation for survival: phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. Sieck JB; Budach WE; Suemeghy Z; Leist C; Villiger TK; Morbidelli M; Soos M J Biotechnol; 2014 Nov; 189():94-103. PubMed ID: 25218361 [TBL] [Abstract][Full Text] [Related]
17. Characterization of cellular responses and cell lysis to elevated hydrodynamic stress from benchtop perfusion bioreactors. Zhang W; Ran Q; Zhao L; Ye Q; Tan WS Biotechnol J; 2024 Mar; 19(3):e2400063. PubMed ID: 38528344 [TBL] [Abstract][Full Text] [Related]
18. An actively mixed mini-bioreactor for protein production from suspended animal cells. Diao J; Young L; Zhou P; Shuler ML Biotechnol Bioeng; 2008 May; 100(1):72-81. PubMed ID: 18078290 [TBL] [Abstract][Full Text] [Related]
19. Synchronized mammalian cell culture: part I--a physical strategy for synchronized cultivation under physiological conditions. Barradas OP; Jandt U; Becker M; Bahnemann J; Pörtner R; Zeng AP Biotechnol Prog; 2015; 31(1):165-74. PubMed ID: 25044769 [TBL] [Abstract][Full Text] [Related]
20. Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1-10 L scale. Hundt B; Best C; Schlawin N; Kassner H; Genzel Y; Reichl U Vaccine; 2007 May; 25(20):3987-95. PubMed ID: 17391818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]