These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 26637800)

  • 21. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2003 May; 89(5):2601-10. PubMed ID: 12740407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of functional neuronal circuitry in the olfactory bulb.
    Imai T
    Semin Cell Dev Biol; 2014 Nov; 35():180-8. PubMed ID: 25084319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gustatory learning and processing in the Drosophila mushroom bodies.
    Kirkhart C; Scott K
    J Neurosci; 2015 Apr; 35(15):5950-8. PubMed ID: 25878268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualization of a Distributed Synaptic Memory Code in the Drosophila Brain.
    Bilz F; Geurten BRH; Hancock CE; Widmann A; Fiala A
    Neuron; 2020 Jun; 106(6):963-976.e4. PubMed ID: 32268119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serotonin is critical for rewarded olfactory short-term memory in Drosophila.
    Sitaraman D; LaFerriere H; Birman S; Zars T
    J Neurogenet; 2012 Jun; 26(2):238-44. PubMed ID: 22436011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.
    MaBouDi H; Shimazaki H; Giurfa M; Chittka L
    PLoS Comput Biol; 2017 Jun; 13(6):e1005551. PubMed ID: 28640825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common properties between synaptic plasticity in the main olfactory bulb and olfactory learning in young rats.
    Zhang JJ; Okutani F; Huang GZ; Taniguchi M; Murata Y; Kaba H
    Neuroscience; 2010 Sep; 170(1):259-67. PubMed ID: 20558253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictive olfactory learning in Drosophila.
    Zhao C; Widmer YF; Diegelmann S; Petrovici MA; Sprecher SG; Senn W
    Sci Rep; 2021 Mar; 11(1):6795. PubMed ID: 33762640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The neuronal architecture of the mushroom body provides a logic for associative learning.
    Aso Y; Hattori D; Yu Y; Johnston RM; Iyer NA; Ngo TT; Dionne H; Abbott LF; Axel R; Tanimoto H; Rubin GM
    Elife; 2014 Dec; 3():e04577. PubMed ID: 25535793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a).
    Pelz D; Roeske T; Syed Z; de Bruyne M; Galizia CG
    J Neurobiol; 2006 Dec; 66(14):1544-63. PubMed ID: 17103386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans.
    Chen Z; Hendricks M; Cornils A; Maier W; Alcedo J; Zhang Y
    Neuron; 2013 Feb; 77(3):572-85. PubMed ID: 23395381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.
    Liu H; Zhou B; Yan W; Lei Z; Zhao X; Zhang K; Guo A
    Eur J Neurosci; 2014 Sep; 40(5):2744-54. PubMed ID: 24964821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stereotyped connectivity and computations in higher-order olfactory neurons.
    Fişek M; Wilson RI
    Nat Neurosci; 2014 Feb; 17(2):280-8. PubMed ID: 24362761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequential use of mushroom body neuron subsets during drosophila odor memory processing.
    Krashes MJ; Keene AC; Leung B; Armstrong JD; Waddell S
    Neuron; 2007 Jan; 53(1):103-15. PubMed ID: 17196534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histone acetylation in the olfactory bulb of young rats facilitates aversive olfactory learning and synaptic plasticity.
    Wang YJ; Okutani F; Murata Y; Taniguchi M; Namba T; Kaba H
    Neuroscience; 2013 Mar; 232():21-31. PubMed ID: 23262233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.
    Aptekar JW; Keleş MF; Lu PM; Zolotova NM; Frye MA
    J Neurosci; 2015 May; 35(19):7587-99. PubMed ID: 25972183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.
    Galán RF; Weidert M; Menzel R; Herz AV; Galizia CG
    Neural Comput; 2006 Jan; 18(1):10-25. PubMed ID: 16354378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contrasting short-term plasticity at two sides of the mitral-granule reciprocal synapse in the mammalian olfactory bulb.
    Dietz SB; Murthy VN
    J Physiol; 2005 Dec; 569(Pt 2):475-88. PubMed ID: 16166156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Presynaptic Ca2+ stores contribute to odor-induced responses in Drosophila olfactory receptor neurons.
    Murmu MS; Stinnakre J; Martin JR
    J Exp Biol; 2010 Dec; 213(Pt 24):4163-73. PubMed ID: 21112997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.