These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 26638237)
41. Three-dimensional mapping of brain neuropils in the cockroach, Diploptera punctata. Chiang AS; Liu YC; Chiu SL; Hu SH; Huang CY; Hsieh CH J Comp Neurol; 2001 Nov; 440(1):1-11. PubMed ID: 11745603 [TBL] [Abstract][Full Text] [Related]
42. A precocious adult visual center in the larva defines the unique optic lobe of the split-eyed whirligig beetle Dineutus sublineatus. Lin C; Strausfeld NJ Front Zool; 2013 Feb; 10(1):7. PubMed ID: 23421712 [TBL] [Abstract][Full Text] [Related]
43. Neuropeptidome of Tribolium castaneum antennal lobes and mushroom bodies. Binzer M; Heuer CM; Kollmann M; Kahnt J; Hauser F; Grimmelikhuijzen CJ; Schachtner J J Comp Neurol; 2014 Feb; 522(2):337-57. PubMed ID: 23818034 [TBL] [Abstract][Full Text] [Related]
44. Octopamine-like immunoreactivity in the honey bee and cockroach: comparable organization in the brain and subesophageal ganglion. Sinakevitch I; Niwa M; Strausfeld NJ J Comp Neurol; 2005 Aug; 488(3):233-54. PubMed ID: 15952163 [TBL] [Abstract][Full Text] [Related]
45. Synaptic organization in the adult Drosophila mushroom body calyx. Leiss F; Groh C; Butcher NJ; Meinertzhagen IA; Tavosanis G J Comp Neurol; 2009 Dec; 517(6):808-24. PubMed ID: 19844895 [TBL] [Abstract][Full Text] [Related]
46. Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. Kreissl S; Eichmüller S; Bicker G; Rapus J; Eckert M J Comp Neurol; 1994 Oct; 348(4):583-95. PubMed ID: 7530730 [TBL] [Abstract][Full Text] [Related]
47. Modality-specific segregation of input to ant mushroom bodies. Gronenberg W Brain Behav Evol; 1999 Aug; 54(2):85-95. PubMed ID: 10529521 [TBL] [Abstract][Full Text] [Related]
48. Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Hofbauer A; Campos-Ortega JA Rouxs Arch Dev Biol; 1990 Feb; 198(5):264-274. PubMed ID: 28305665 [TBL] [Abstract][Full Text] [Related]
49. FMRFamide-like immunocytochemistry in the brain and subesophageal ganglion of Triatoma infestans (Insecta: Heteroptera). Coexpression with beta-pigment-dispersing hormone and small cardioactive peptide B. Settembrini BP; Villar MJ Cell Tissue Res; 2005 Aug; 321(2):299-310. PubMed ID: 15947966 [TBL] [Abstract][Full Text] [Related]
56. 3D reconstruction of larval and adult brain neuropils of two giant silk moth species: Hyalophora cecropia and Antheraea pernyi. Sehadová H; Podlahová Š; Reppert SM; Sauman I J Insect Physiol; 2023 Sep; 149():104546. PubMed ID: 37451537 [TBL] [Abstract][Full Text] [Related]
57. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. Harzsch S; Krieger J Arthropod Struct Dev; 2021 Nov; 65():101100. PubMed ID: 34488068 [TBL] [Abstract][Full Text] [Related]
58. Stratification and synaptogenesis in the mushroom body of the honeybee, Apis mellifera. Ganeshina O J Morphol; 2010 Jul; 271(7):826-44. PubMed ID: 20309876 [TBL] [Abstract][Full Text] [Related]
59. Separate distribution of deutocerebral projection neurons in the mushroom bodies of the cricket brain. Frambach I; Schürmann FW Acta Biol Hung; 2004; 55(1-4):21-9. PubMed ID: 15270215 [TBL] [Abstract][Full Text] [Related]
60. Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. Schürmann FW Arthropod Struct Dev; 2016 Sep; 45(5):399-421. PubMed ID: 27555065 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]