These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26638479)

  • 1. [GLUCOSE METABOLISM IN SURFACTANTS PRODUCER NOCARDIA VACCINII IMV B-7405].
    Pirog TP; Shevchuk TA; Beregova KA
    Mikrobiol Z; 2015; 77(5):2-10. PubMed ID: 26638479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [PECULIARITIES OF GLUCOSE AND GLYCEROL METABOLISM IN Nocardia vaccinii IMB B-7405].
    Pirog TP; Shevchuk TA; Beregova KA; Kudrya NV
    Ukr Biochem J; 2015; 87(2):66-75. PubMed ID: 26255340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Glycerol metabolism in surfactants producers Acinetobacter calcaaceticus IMV B-7241 and Rhodococcus erythropolis IMV Ac-5017].
    Pirog TP; Shevchuk TA; Shuliakova MA
    Mikrobiol Z; 2012; 74(4):29-36. PubMed ID: 23088097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-delta-lactone in Saccharomyces cerevisiae.
    Sinha A; Maitra PK
    J Gen Microbiol; 1992 Sep; 138(9):1865-73. PubMed ID: 1328471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Synthesis of surfactants by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 on industrial waste].
    Pirog TP; Sofilkanich AP; Pokora KA; Shevchuk TA; Iutinskaia GA
    Mikrobiol Z; 2014; 76(2):17-23. PubMed ID: 25000725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast.
    Corkins ME; Wilson S; Cocuron JC; Alonso AP; Bird AJ
    J Biol Chem; 2017 Aug; 292(33):13823-13832. PubMed ID: 28667014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring flux through the oxidative pentose phosphate pathway using [1-14C]gluconate.
    Garlick AP; Moore C; Kruger NJ
    Planta; 2002 Dec; 216(2):265-72. PubMed ID: 12447540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predominance of gluconate formation from glucose during germination of Bacillus megaterium QM B1551 spores.
    Otani M; Ihara N; Umezawa C; Sano K
    J Bacteriol; 1986 Jul; 167(1):148-52. PubMed ID: 3013833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2.
    Frunzke J; Engels V; Hasenbein S; Gätgens C; Bott M
    Mol Microbiol; 2008 Jan; 67(2):305-22. PubMed ID: 18047570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gluconate metabolism of Pasteurellapestis.
    MORTLOCK RP
    J Bacteriol; 1962 Jul; 84(1):53-9. PubMed ID: 14476383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One of the NAD kinases, sll1415, is required for the glucose metabolism of Synechocystis sp. PCC 6803.
    Ishikawa Y; Miyagi A; Ishikawa T; Nagano M; Yamaguchi M; Hihara Y; Kaneko Y; Kawai-Yamada M
    Plant J; 2019 May; 98(4):654-666. PubMed ID: 30693583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the pentose cycle in Nocardia corallina.
    Brown O; Clark JB
    Proc Soc Exp Biol Med; 1966 Jul; 122(3):887-90. PubMed ID: 4380627
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces pombe.
    Tsai CS; Shi JL; Ye HG
    Arch Biochem Biophys; 1995 Jan; 316(1):163-8. PubMed ID: 7840612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of gluconate by Aspergillus niger. I. Enzymes of phosphorylating and nonphosphorylating pathways.
    Müller HM
    Zentralbl Mikrobiol; 1985; 140(6):475-84. PubMed ID: 4072456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gluconate accumulation and enzyme activities with extremely nitrogen-limited surface cultures of Aspergillus niger.
    Müller HM
    Arch Microbiol; 1986 Mar; 144(2):151-7. PubMed ID: 3013115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Influence of heavy metals on surfactants synthesis by Nocardia vaccinii IMV B-7405].
    Pirog TP; Konon AD; Pokora KA; Shevchuk TA; Iutinskaia GA
    Mikrobiol Z; 2014; 76(4):9-16. PubMed ID: 25199340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-13 NMR studies and purification of gluconate pathway enzymes from Schizosaccharomyces pombe.
    Tsai CS; Ye HG; Shi JL
    Arch Biochem Biophys; 1995 Jan; 316(1):155-62. PubMed ID: 7840611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.