BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 26638691)

  • 1. Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality.
    Heo JH; Kim KI; Cho HH; Lee JW; Lee BS; Yoon S; Park KJ; Lee S; Kim J; Whang D; Lee JH
    Langmuir; 2015 Dec; 31(51):13773-82. PubMed ID: 26638691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthogonal analysis of functional gold nanoparticles for biomedical applications.
    Tsai DH; Lu YF; DelRio FW; Cho TJ; Guha S; Zachariah MR; Zhang F; Allen A; Hackley VA
    Anal Bioanal Chem; 2015 Nov; 407(28):8411-22. PubMed ID: 26362156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of gold nanoparticle surface co-functionalization approaches using Polyethylene Glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization.
    Harrison E; Nicol JR; Macias-Montero M; Burke GA; Coulter JA; Meenan BJ; Dixon D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():710-8. PubMed ID: 26952476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides.
    Li J; Zhu B; Yao X; Zhang Y; Zhu Z; Tu S; Jia S; Liu R; Kang H; Yang CJ
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16800-7. PubMed ID: 25188540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-functionalized gold nanoparticles in macromolecularly crowded polymer solutions.
    Shin J; Zhang X; Liu J
    J Phys Chem B; 2012 Nov; 116(45):13396-402. PubMed ID: 23113659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles.
    Liu X; Huang H; Jin Q; Ji J
    Langmuir; 2011 May; 27(9):5242-51. PubMed ID: 21476529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomedical Applications of DNA-Conjugated Gold Nanoparticles.
    Wang CC; Wu SM; Li HW; Chang HT
    Chembiochem; 2016 Jun; 17(12):1052-62. PubMed ID: 26864481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles.
    Liu X; Huang N; Wang H; Li H; Jin Q; Ji J
    Biomaterials; 2013 Nov; 34(33):8370-81. PubMed ID: 23932246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.
    Kim HJ; Takemoto H; Yi Y; Zheng M; Maeda Y; Chaya H; Hayashi K; Mi P; Pittella F; Christie RJ; Toh K; Matsumoto Y; Nishiyama N; Miyata K; Kataoka K
    ACS Nano; 2014 Sep; 8(9):8979-91. PubMed ID: 25133608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting colloidal stabilization factors in crowded polymer solutions by forming self-assembled monolayers on gold nanoparticles.
    Lang NJ; Liu B; Zhang X; Liu J
    Langmuir; 2013 May; 29(20):6018-24. PubMed ID: 23617539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells.
    Kalimuthu K; Lubin BC; Bazylevich A; Gellerman G; Shpilberg O; Luboshits G; Firer MA
    J Nanobiotechnology; 2018 Mar; 16(1):34. PubMed ID: 29602308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of thiol-containing polyethylene glycol (thiol-PEG) in the modification process of gold nanoparticles (AuNPs): stabilizer or coagulant?
    Wang W; Wei QQ; Wang J; Wang BC; Zhang SH; Yuan Z
    J Colloid Interface Sci; 2013 Aug; 404():223-9. PubMed ID: 23711661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer.
    Chattopadhyay N; Cai Z; Pignol JP; Keller B; Lechtman E; Bendayan R; Reilly RM
    Mol Pharm; 2010 Dec; 7(6):2194-206. PubMed ID: 20973534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxicity, intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells.
    Tlotleng N; Vetten MA; Keter FK; Skepu A; Tshikhudo R; Gulumian M
    Cell Biol Toxicol; 2016 Aug; 32(4):305-21. PubMed ID: 27184667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the spacer structure on the stability of gold nanoparticles functionalized with monodentate thiolated poly(ethylene glycol) ligands.
    Schulz F; Vossmeyer T; Bastús NG; Weller H
    Langmuir; 2013 Aug; 29(31):9897-908. PubMed ID: 23829571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide.
    Zhang X; Huang PJ; Servos MR; Liu J
    Langmuir; 2012 Oct; 28(40):14330-7. PubMed ID: 22989102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-Dependent Cellular Uptake of DNA Functionalized Gold Nanoparticles.
    Wong AC; Wright DW
    Small; 2016 Oct; 12(40):5592-5600. PubMed ID: 27562251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cisplatin-tethered gold nanoparticles that exhibit enhanced reproducibility, drug loading, and stability: a step closer to pharmaceutical approval?
    Craig GE; Brown SD; Lamprou DA; Graham D; Wheate NJ
    Inorg Chem; 2012 Mar; 51(6):3490-7. PubMed ID: 22390791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice.
    Zhang G; Yang Z; Lu W; Zhang R; Huang Q; Tian M; Li L; Liang D; Li C
    Biomaterials; 2009 Apr; 30(10):1928-36. PubMed ID: 19131103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Polymer Coating of Gold Nanoparticles on Oxidative Stress and DNA Damage.
    Sen GT; Ozkemahli G; Shahbazi R; Erkekoglu P; Ulubayram K; Kocer-Gumusel B
    Int J Toxicol; 2020; 39(4):328-340. PubMed ID: 32483993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.