These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26638896)

  • 21. Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA.
    el Hassan MA; Calladine CR
    J Mol Biol; 1996 May; 259(1):95-103. PubMed ID: 8648652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA elasticity from coarse-grained simulations: The effect of groove asymmetry.
    Skoruppa E; Laleman M; Nomidis SK; Carlon E
    J Chem Phys; 2017 Jun; 146(21):214902. PubMed ID: 28595422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computing the Elastic Mechanical Properties of Rodlike DNA Nanostructures.
    Chhabra H; Mishra G; Cao Y; Prešern D; Skoruppa E; Tortora MMC; Doye JPK
    J Chem Theory Comput; 2020 Dec; 16(12):7748-7763. PubMed ID: 33164531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence-dependent twist-bend coupling in DNA minicircles.
    Kim M; Bae S; Oh I; Yoo J; Kim JS
    Nanoscale; 2021 Dec; 13(47):20186-20196. PubMed ID: 34847218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the thermal stabilization and conformational transitions of DNA by hyperthermophile protein Sso7d: molecular dynamics simulations and MM-PBSA analysis.
    Chen L; Zheng QC; Yu LY; Chu WT; Zhang JL; Xue Q; Zhang HX; Sun CC
    J Biomol Struct Dyn; 2012; 30(6):716-27. PubMed ID: 22731116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps.
    Mukherjee S; Kailasam S; Bansal M; Bhattacharyya D
    Biopolymers; 2015 Mar; 103(3):134-47. PubMed ID: 25257334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The energy of naturally curved elastic rods with an application to the stretching and contraction of a free helical spring as a model for DNA.
    Manning GS
    J Chem Phys; 2015 Sep; 143(10):104901. PubMed ID: 26374056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability.
    Anselmi C; Bocchinfuso G; De Santis P; Savino M; Scipioni A
    Biophys J; 2000 Aug; 79(2):601-13. PubMed ID: 10919995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overtwisting induces polygonal shapes in bent DNA.
    Caraglio M; Skoruppa E; Carlon E
    J Chem Phys; 2019 Apr; 150(13):135101. PubMed ID: 30954045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unwinding Induced Melting of Double-Stranded DNA Studied by Free Energy Simulations.
    Liebl K; Zacharias M
    J Phys Chem B; 2017 Dec; 121(49):11019-11030. PubMed ID: 29064703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative structural analysis by [1H,31P]-NMR and restrained molecular dynamics of two DNA hairpins from a strong DNA topoisomerase II cleavage site.
    Mauffret O; Amir-Aslani A; Maroun RG; Monnot M; Lescot E; Fermandjian S
    J Mol Biol; 1998 Oct; 283(3):643-55. PubMed ID: 9784373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. B-DNA under stress: over- and untwisting of DNA during molecular dynamics simulations.
    Kannan S; Kohlhoff K; Zacharias M
    Biophys J; 2006 Oct; 91(8):2956-65. PubMed ID: 16861282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of intrinsic dynamics in a DNA sequence preferentially cleaved by topoisomerase II enzyme.
    Masliah G; René B; Zargarian L; Fermandjian S; Mauffret O
    J Mol Biol; 2008 Sep; 381(3):692-706. PubMed ID: 18585388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling DNA loops using the theory of elasticity.
    Balaeff A; Mahadevan L; Schulten K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031919. PubMed ID: 16605570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials.
    Li G; Shen H; Zhang D; Li Y; Wang H
    J Chem Theory Comput; 2016 Feb; 12(2):676-93. PubMed ID: 26717419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Basis for Elastic Mechanical Properties of the DNA Double Helix.
    Kim YJ; Kim DN
    PLoS One; 2016; 11(4):e0153228. PubMed ID: 27055239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How global DNA unwinding causes non-uniform stress distribution and melting of DNA.
    Liebl K; Zacharias M
    PLoS One; 2020; 15(5):e0232976. PubMed ID: 32413048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA deformability at the base pair level.
    Lankas F; Sponer J; Langowski J; Cheatham TE
    J Am Chem Soc; 2004 Apr; 126(13):4124-5. PubMed ID: 15053599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.