These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 266389)
41. A mathematical model of a heroin epidemic: implications for control policies. Mackintosh DR; Stewart GT J Epidemiol Community Health; 1979 Dec; 33(4):299-304. PubMed ID: 536680 [TBL] [Abstract][Full Text] [Related]
42. [Some simple mathematical models of population genetics]. Cristea A Stud Cercet Virusol; 1973; 24(1):55-68. PubMed ID: 4704372 [No Abstract] [Full Text] [Related]
43. Estimation and computation of the growth rate in Leslie's and Lotka's population models. Anderson DH Biometrics; 1975 Sep; 31(3):701-18. PubMed ID: 1174624 [TBL] [Abstract][Full Text] [Related]
44. Theory on prospect of population evolution processes. Song J; Yu JY; Li GG Sci Sin; 1981 Mar; 24(3):431-44. PubMed ID: 7256253 [TBL] [Abstract][Full Text] [Related]
45. Mathematical models of Ebola-Consequences of underlying assumptions. Feng Z; Zheng Y; Hernandez-Ceron N; Zhao H; Glasser JW; Hill AN Math Biosci; 2016 Jul; 277():89-107. PubMed ID: 27130854 [TBL] [Abstract][Full Text] [Related]
46. A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Capasso V; Paveri-Fontana SL Rev Epidemiol Sante Publique; 1979 Sep; 27(2):121-32. PubMed ID: 538301 [TBL] [Abstract][Full Text] [Related]
47. [Models of a genetic control system]. Agurskiĭ MS Zh Obshch Biol; 1970; 31(3):259-67. PubMed ID: 5472096 [No Abstract] [Full Text] [Related]
48. Applications of generalized multi-type age-dependent branching processes in population genetics. Mode CJ Bull Math Biophys; 1969 Sep; 31(3):575-89. PubMed ID: 5350075 [No Abstract] [Full Text] [Related]
50. The analysis of a diallel cross of heterozygous or multiple allelic lines. Oakes MW Heredity (Edinb); 1967 Feb; 22(1):83-95. PubMed ID: 5231482 [No Abstract] [Full Text] [Related]
51. [Combating infectious disease using mathematical modelling]. Kretzschmar M; Wallinga J; Coutinho RA Ned Tijdschr Geneeskd; 2006 Sep; 150(36):1965-70. PubMed ID: 17002184 [TBL] [Abstract][Full Text] [Related]
52. On the derivation of a two-sex stable population model. Mitra S Demography; 1978 Nov; 15(4):541-8. PubMed ID: 738479 [No Abstract] [Full Text] [Related]
53. [Parametric identification of mathematical models of population genetics taking into account the geographical dispersion in finite samples]. Volkov IK Genetika; 1988 Feb; 24(2):370-5. PubMed ID: 3282991 [TBL] [Abstract][Full Text] [Related]
54. [Modeling the relationship between epidemic and infectious processes]. Rvachev LA Vestn Akad Med Nauk SSSR; 1968; 23(5):34-7. PubMed ID: 5741600 [No Abstract] [Full Text] [Related]
55. [Generalization of the notion of heritability of several characters: coheritability]. de Reggi C Ann Genet; 1972 Mar; 15(1):41-4. PubMed ID: 4537613 [No Abstract] [Full Text] [Related]
56. The number of balanced polymorphisms that can be maintained in a natural population. Sved JA; Reed TE; Bodmer WF Genetics; 1967 Mar; 55(3):469-81. PubMed ID: 6038420 [No Abstract] [Full Text] [Related]
57. A kinetic model of population dynamics. Schweitzer DG; Dienes GJ Demography; 1971 Aug; 8(3):389-400. PubMed ID: 5164005 [No Abstract] [Full Text] [Related]
58. [Genetic models of prevalent diseases]. Sergeev AS Vestn Akad Med Nauk SSSR; 1982; (6):81-7. PubMed ID: 7113425 [No Abstract] [Full Text] [Related]
59. Interspecific competition: a new approach to the classical theory. Vandermeer JH Science; 1975 Apr; 188(4185):253-5. PubMed ID: 1118725 [TBL] [Abstract][Full Text] [Related]
60. [Mathematical models as tools for studying and developing strategies in the case of a pandemic influenza outbreak]. Huppert A; Katriel H; Yaari R; Barnea O; Roll U; Stern E; Balicer R; Stone L Harefuah; 2010 Jan; 149(1):4-8, 64. PubMed ID: 20422832 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]