BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26638927)

  • 1. PGx: Putting Peptides to BED.
    Askenazi M; Ruggles KV; Fenyö D
    J Proteome Res; 2016 Mar; 15(3):795-9. PubMed ID: 26638927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteogenomics: concepts, applications and computational strategies.
    Nesvizhskii AI
    Nat Methods; 2014 Nov; 11(11):1114-25. PubMed ID: 25357241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteogenomics from a bioinformatics angle: A growing field.
    Menschaert G; Fenyö D
    Mass Spectrom Rev; 2017 Sep; 36(5):584-599. PubMed ID: 26670565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass spectrum sequential subtraction speeds up searching large peptide MS/MS spectra datasets against large nucleotide databases for proteogenomics.
    Helmy M; Sugiyama N; Tomita M; Ishihama Y
    Genes Cells; 2012 Aug; 17(8):633-44. PubMed ID: 22686349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteogenomics in microbiology: taking the right turn at the junction of genomics and proteomics.
    Kucharova V; Wiker HG
    Proteomics; 2014 Dec; 14(23-24):2360-675. PubMed ID: 25263021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene model detection using mass spectrometry.
    Nanduri B; Wang N; Lawrence ML; Bridges SM; Burgess SC
    Methods Mol Biol; 2010; 604():137-44. PubMed ID: 20013369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tool for integrating genetic and mass spectrometry-based peptide data: Proteogenomics Viewer: PV: A genome browser-like tool, which includes MS data visualization and peptide identification parameters.
    Kroll JE; da Silva VL; de Souza SJ; de Souza GA
    Bioessays; 2017 Jul; 39(7):. PubMed ID: 28582591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant proteogenomics: from protein extraction to improved gene predictions.
    Chapman B; Castellana N; Apffel A; Ghan R; Cramer GR; Bellgard M; Haynes PA; Van Sluyter SC
    Methods Mol Biol; 2013; 1002():267-94. PubMed ID: 23625410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms.
    Zickmann F; Renard BY
    Bioinformatics; 2015 Jun; 31(12):i106-15. PubMed ID: 26072472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteogenomics: From next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine.
    Ang MY; Low TY; Lee PY; Wan Mohamad Nazarie WF; Guryev V; Jamal R
    Clin Chim Acta; 2019 Nov; 498():38-46. PubMed ID: 31421119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry at the interface of proteomics and genomics.
    Krug K; Nahnsen S; Macek B
    Mol Biosyst; 2011 Feb; 7(2):284-91. PubMed ID: 20967315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic variability and protein species - Improving sequence coverage for proteogenomics.
    Bischoff R; Permentier H; Guryev V; Horvatovich P
    J Proteomics; 2016 Feb; 134():25-36. PubMed ID: 26394375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Proteogenomic Analysis Reveals Multiple Peptide Mutations and Complex Immunoglobulin Peptides in Colon Cancer.
    Woo S; Cha SW; Bonissone S; Na S; Tabb DL; Pevzner PA; Bafna V
    J Proteome Res; 2015 Sep; 14(9):3555-67. PubMed ID: 26139413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using cross-correlation normalized for peptide length to optimize peptide identification in shotgun proteomics.
    Yang B; Ying W; Gong Y; Zhang Y; Cai Y; Dong H; Qian X
    Rapid Commun Mass Spectrom; 2005; 19(20):2983-5. PubMed ID: 16178048
    [No Abstract]   [Full Text] [Related]  

  • 16. The proBAM and proBed standard formats: enabling a seamless integration of genomics and proteomics data.
    Menschaert G; Wang X; Jones AR; Ghali F; Fenyö D; Olexiouk V; Zhang B; Deutsch EW; Ternent T; Vizcaíno JA
    Genome Biol; 2018 Jan; 19(1):12. PubMed ID: 29386051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo sequencing methods in proteomics.
    Hughes C; Ma B; Lajoie GA
    Methods Mol Biol; 2010; 604():105-21. PubMed ID: 20013367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of proteotypic peptides for quantitative proteomics.
    Mallick P; Schirle M; Chen SS; Flory MR; Lee H; Martin D; Ranish J; Raught B; Schmitt R; Werner T; Kuster B; Aebersold R
    Nat Biotechnol; 2007 Jan; 25(1):125-31. PubMed ID: 17195840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Accessible Proteogenomics Informatics Resource for Cancer Researchers.
    Chambers MC; Jagtap PD; Johnson JE; McGowan T; Kumar P; Onsongo G; Guerrero CR; Barsnes H; Vaudel M; Martens L; Grüning B; Cooke IR; Heydarian M; Reddy KL; Griffin TJ
    Cancer Res; 2017 Nov; 77(21):e43-e46. PubMed ID: 29092937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical and Computational Methods for Proteogenomic Data Analysis.
    Song X
    Methods Mol Biol; 2023; 2629():271-303. PubMed ID: 36929082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.