These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26638994)

  • 61. Engineered CuInSexS2-x Quantum Dots for Sensitized Solar Cells.
    McDaniel H; Fuke N; Pietryga JM; Klimov VI
    J Phys Chem Lett; 2013 Feb; 4(3):355-61. PubMed ID: 26281723
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells.
    Coughlin KM; Nevins JS; Watson DF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8649-54. PubMed ID: 23937323
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Three-dimensional self-assembly of networked branched TiO₂ nanocrystal scaffolds for efficient room-temperature processed depleted bulk heterojunction solar cells.
    Loiudice A; Grancini G; Taurino A; Corricelli M; Belviso MR; Striccoli M; Agostiano A; Curri ML; Petrozza A; Cozzoli PD; Rizzo A; Gigli G
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5026-33. PubMed ID: 24606576
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells.
    Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK
    Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.
    Wang J; Liu S; Mu Y; Liu L; A R; Yang J; Zhu G; Meng X; Fu W; Yang H
    J Colloid Interface Sci; 2017 Nov; 505():1047-1054. PubMed ID: 28697544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition.
    Im SH; Lee YH; Seok SI; Kim SW; Kim SW
    Langmuir; 2010 Dec; 26(23):18576-80. PubMed ID: 21069989
    [TBL] [Abstract][Full Text] [Related]  

  • 67. N-Ion-implanted TiO2 photoanodes in quantum dot-sensitized solar cells.
    Sudhagar P; Asokan K; Ito E; Kang YS
    Nanoscale; 2012 Apr; 4(7):2416-22. PubMed ID: 22371010
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Performance enhancement of quantum-dot-sensitized solar cells by potential-induced ionic layer adsorption and reaction.
    Liu IP; Chang CW; Teng H; Lee YL
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19378-84. PubMed ID: 25331272
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A highly efficient light capturing 2D (nanosheet)-1D (nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells.
    Kim H; Yong K
    Phys Chem Chem Phys; 2013 Feb; 15(6):2109-16. PubMed ID: 23288043
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Improving the performance of colloidal quantum-dot-sensitized solar cells.
    Giménez S; Mora-Seró I; Macor L; Guijarro N; Lana-Villarreal T; Gómez R; Diguna LJ; Shen Q; Toyoda T; Bisquert J
    Nanotechnology; 2009 Jul; 20(29):295204. PubMed ID: 19567969
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays.
    Huang S; Zhang Q; Huang X; Guo X; Deng M; Li D; Luo Y; Shen Q; Toyoda T; Meng Q
    Nanotechnology; 2010 Sep; 21(37):375201. PubMed ID: 20714055
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells.
    Li W; Zhong X
    J Phys Chem Lett; 2015 Mar; 6(5):796-806. PubMed ID: 26262655
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells.
    Lim CS; Im SH; Chang JA; Lee YH; Kim HJ; Seok SI
    Nanoscale; 2012 Jan; 4(2):429-32. PubMed ID: 22117234
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells.
    Lv M; Zheng D; Ye M; Sun L; Xiao J; Guo W; Lin C
    Nanoscale; 2012 Sep; 4(19):5872-9. PubMed ID: 22899164
    [TBL] [Abstract][Full Text] [Related]  

  • 75. PbS Quantum-Dot Depleted Heterojunction Solar Cells Employing CdS Nanorod Arrays as the Electron Acceptor with Enhanced Efficiency.
    Yao X; Liu S; Chang Y; Li G; Mi L; Wang X; Jiang Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23117-23. PubMed ID: 26418344
    [TBL] [Abstract][Full Text] [Related]  

  • 76. TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells.
    Lee W; Kang SH; Kim JY; Kolekar GB; Sung YE; Han SH
    Nanotechnology; 2009 Aug; 20(33):335706. PubMed ID: 19636095
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell.
    Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF
    Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting.
    Liu Q; Lu H; Shi Z; Wu F; Guo J; Deng K; Li L
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17200-7. PubMed ID: 25225738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.