These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26639406)

  • 1. Ionic Current Rectification in a pH-Tunable Polyelectrolyte Brushes Functionalized Conical Nanopore: Effect of Salt Gradient.
    Lin JY; Lin CY; Hsu JP; Tseng S
    Anal Chem; 2016 Jan; 88(2):1176-87. PubMed ID: 26639406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.
    Zeng Z; Ai Y; Qian S
    Phys Chem Chem Phys; 2014 Feb; 16(6):2465-74. PubMed ID: 24358472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes.
    Hsu JP; Yang ST; Lin CY; Tseng S
    J Colloid Interface Sci; 2019 Mar; 537():496-504. PubMed ID: 30469118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space charge modulation and ion current rectification of a cylindrical nanopore functionalized with polyelectrolyte brushes subject to an applied pH-gradient.
    Chen YT; Hsu JP
    J Colloid Interface Sci; 2022 Jan; 605():571-581. PubMed ID: 34340041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic behavior of conical nanopores functionalized with two polyelectrolyte layers: effect of pH gradient.
    Liu TJ; Hsu JP
    Soft Matter; 2022 Nov; 18(44):8427-8435. PubMed ID: 36301179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore.
    Lin DH; Lin CY; Tseng S; Hsu JP
    Nanoscale; 2015 Sep; 7(33):14023-31. PubMed ID: 26239192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of polyelectrolyte modification for rectifying the ionic current in conically shaped nanochannels.
    Hsu JP; Wu HH; Lin CY; Tseng S
    Phys Chem Chem Phys; 2017 Feb; 19(7):5351-5360. PubMed ID: 28155942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes.
    Yeh LH; Zhang M; Hu N; Joo SW; Qian S; Hsu JP
    Nanoscale; 2012 Aug; 4(16):5169-77. PubMed ID: 22802160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of salt valence on the rectification behavior of nanochannels.
    Hsu JP; Chen YM; Yang ST; Lin CY; Tseng S
    J Colloid Interface Sci; 2018 Dec; 531():483-492. PubMed ID: 30055443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulating Current Rectification and Nanoparticle Transport Through a Salt Gradient in Bipolar Nanopores.
    Lin CY; Yeh LH; Hsu JP; Tseng S
    Small; 2015 Sep; 11(35):4594-602. PubMed ID: 26148458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores.
    Qian S; Joo SW; Ai Y; Cheney MA; Hou W
    J Colloid Interface Sci; 2009 Jan; 329(2):376-83. PubMed ID: 18977486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of Ultrahigh Rectification in Polyelectrolyte Bilayers Modified Conical Nanopores.
    Liu TJ; Ma T; Lin CY; Balme S; Hsu JP
    J Phys Chem Lett; 2021 Dec; 12(49):11858-11864. PubMed ID: 34874161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion Current Rectification Behavior of Bioinspired Nanopores Having a pH-Tunable Zwitterionic Surface.
    Hsu JP; Wu HH; Lin CY; Tseng S
    Anal Chem; 2017 Apr; 89(7):3952-3958. PubMed ID: 28281346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Polyelectrolyte Multilayers on the Ionic Current Rectification of Conical Nanopores.
    Ma T; Gaigalas P; Lepoitevin M; Plikusiene I; Bechelany M; Janot JM; Balanzat E; Balme S
    Langmuir; 2018 Mar; 34(11):3405-3412. PubMed ID: 29466014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport and current rectification in a charged conical nanopore filled with viscoelastic fluids.
    Trivedi M; Nirmalkar N
    Sci Rep; 2022 Feb; 12(1):2547. PubMed ID: 35169151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling pH-regulated bionanoparticles translocation through nanopores with polyelectrolyte brushes.
    Yeh LH; Zhang M; Joo SW; Qian S; Hsu JP
    Anal Chem; 2012 Nov; 84(21):9615-22. PubMed ID: 23035927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes.
    Zeng Z; Yeh LH; Zhang M; Qian S
    Nanoscale; 2015 Oct; 7(40):17020-9. PubMed ID: 26415890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic motion of a nanorod along the axis of a nanopore under a salt gradient.
    Joo SW; Qian S
    J Colloid Interface Sci; 2011 Apr; 356(1):331-40. PubMed ID: 21277582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active current gating in electrically biased conical nanopores.
    Bearden S; Simpanen E; Zhang G
    Nanotechnology; 2015 May; 26(18):185502. PubMed ID: 25865738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes.
    Yameen B; Ali M; Neumann R; Ensinger W; Knoll W; Azzaroni O
    J Am Chem Soc; 2009 Feb; 131(6):2070-1. PubMed ID: 19159287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.