BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2663960)

  • 1. Uptake of inert particles by dog alveolar macrophages in vitro--a comparison of monolayer and suspension techniques.
    Mueller HL; Guilmette RA; Muggenburg BA
    J Appl Toxicol; 1989 Jun; 9(3):135-43. PubMed ID: 2663960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence on particle size in the phagocytosis of latex particles by rabbit alveolar macrophages cultured in vitro.
    Kubota Y; Takahashi S; Matsuoka O
    J Toxicol Sci; 1983 Aug; 8(3):189-95. PubMed ID: 6663654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of opsonin-independent phagocytosis by alveolar macrophages in monolayer using polystyrene microspheres.
    Lehnert BE; Tech C
    J Immunol Methods; 1985 Apr; 78(2):337-44. PubMed ID: 3989316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alveolar macrophage-particle relationships during lung clearance.
    Lehnert BE; Valdez YE; Tietjen GL
    Am J Respir Cell Mol Biol; 1989 Aug; 1(2):145-54. PubMed ID: 2620000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle distribution in lung and lymph node tissues of rats and dogs and the migration of particle-containing alveolar cells in vitro.
    Mueller HL; Robinson B; Muggenburg BA; Gillett NA; Guilmette RA
    J Toxicol Environ Health; 1990 Jul; 30(3):141-65. PubMed ID: 2366255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of early alveolar particle clearance and macrophage function following an acute inhalation of sulfuric acid mist.
    Naumann BD; Schlesinger RB
    Exp Lung Res; 1986; 11(1):13-33. PubMed ID: 3720692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of suspension nebulization or instillation on particle uptake by guinea pig alveolar macrophages.
    Suarez S; Kazantseva M; Bhat M; Costa D; Hickey AJ
    Inhal Toxicol; 2001 Sep; 13(9):773-88. PubMed ID: 11498805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for obtaining peritoneal macrophages from chickens.
    Sabet T; Wen-Cheng H; Stanisz M; El-Domeiri A; Van Alten P
    J Immunol Methods; 1977; 14(2):103-10. PubMed ID: 839078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An interspecies comparison of the phagocytosis and dissolution of 241AmO2 particles by rat, dog and monkey alveolar macrophages in vitro.
    Taya A; Carmack DB; Muggenburg BA; Mewhinney JA
    Int J Radiat Biol; 1992 Jul; 62(1):89-95. PubMed ID: 1353780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro dissolution of uniform cobalt oxide particles by human and canine alveolar macrophages.
    Kreyling WG; Godleski JJ; Kariya ST; Rose RM; Brain JD
    Am J Respir Cell Mol Biol; 1990 May; 2(5):413-22. PubMed ID: 2340182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein biosynthesis by the pulmonary alveolar macrophage. Comparison of synthetic activity of suspended cells and cells on surfaces.
    Leffingwell CM; Low RB
    Am Rev Respir Dis; 1975 Sep; 112(3):349-59. PubMed ID: 1163891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the rate of phagocytosis of orthorhombic cyclosporine A (CsA) and latex particles by alveolar macrophages from hamsters.
    Maye I; de Fraissinette A; Cruz-Orive LM; Vonderscher J; Richter F; Gehr P
    Cell Mol Life Sci; 1997 Aug; 53(8):689-96. PubMed ID: 9351473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release from alveolar macrophages of an inhibitor of phagocytosis.
    Ulrich F; Zilversmit DB
    Am J Physiol; 1970 Apr; 218(4):1118-27. PubMed ID: 5435410
    [No Abstract]   [Full Text] [Related]  

  • 14. Human alveolar macrophage fibronectin: synthesis, secretion, and ultrastructural localization during gelatin-coated latex particle binding.
    Villiger B; Kelley DG; Engleman W; Kuhn C; McDonald JA
    J Cell Biol; 1981 Sep; 90(3):711-20. PubMed ID: 7287821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phagocytosis of mineral dusts on elastase secretion by alveolar and peritoneal exudative macrophages.
    White R; Kuhn C
    Arch Environ Health; 1980; 35(2):106-9. PubMed ID: 6899953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technique for differentiating particles that are cell-associated or ingested by macrophages.
    Gardner DE; Graham JA; Miller FJ; Illing JW; Coffin DL
    Appl Microbiol; 1973 Mar; 25(3):471-5. PubMed ID: 4121509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired function of bovine alveolar macrophages infected with parainfluenza-3 virus.
    Liggitt D; Huston L; Silflow R; Evermann J; Trigo E
    Am J Vet Res; 1985 Aug; 46(8):1740-4. PubMed ID: 2994528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramicron-sized particle clearance from alveoli: route and kinetics.
    Langenback EG; Bergofsky EH; Halpern JG; Foster WM
    J Appl Physiol (1985); 1990 Oct; 69(4):1302-8. PubMed ID: 2262447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phagocytic activity of alveolar macrophages toward polystyrene latex microspheres and PLGA microspheres loaded with anti-tuberculosis agent.
    Hasegawa T; Hirota K; Tomoda K; Ito F; Inagawa H; Kochi C; Soma G; Makino K; Terada H
    Colloids Surf B Biointerfaces; 2007 Nov; 60(2):221-8. PubMed ID: 17683920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of oxidant production in alveolar macrophages by pollutant and latex particles.
    Hatch GE; Gardner DE; Menzel DB
    Environ Res; 1980 Oct; 23(1):121-36. PubMed ID: 7191798
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.