These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 26639665)

  • 1. The styrene-maleic acid copolymer: a versatile tool in membrane research.
    Dörr JM; Scheidelaar S; Koorengevel MC; Dominguez JJ; Schäfer M; van Walree CA; Killian JA
    Eur Biophys J; 2016 Jan; 45(1):3-21. PubMed ID: 26639665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer.
    Dominguez Pardo JJ; Dörr JM; Iyer A; Cox RC; Scheidelaar S; Koorengevel MC; Subramaniam V; Killian JA
    Eur Biophys J; 2017 Jan; 46(1):91-101. PubMed ID: 27815573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane proteins: is the future disc shaped?
    Lee SC; Pollock NL
    Biochem Soc Trans; 2016 Aug; 44(4):1011-8. PubMed ID: 27528746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SMALPs Are Not Simply Nanodiscs: The Polymer-to-Lipid Ratios of Fractionated SMALPs Underline Their Heterogeneous Nature.
    Kamilar E; Bariwal J; Zheng W; Ma H; Liang H
    Biomacromolecules; 2023 Apr; 24(4):1819-1838. PubMed ID: 36947865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic diffusional sizing probes lipid nanodiscs formation.
    Azouz M; Gonin M; Fiedler S; Faherty J; Decossas M; Cullin C; Villette S; Lafleur M; D Alves I; Lecomte S; Ciaccafava A
    Biochim Biophys Acta Biomembr; 2020 Jun; 1862(6):183215. PubMed ID: 32061645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers.
    Esmaili M; Overduin M
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):257-263. PubMed ID: 29056560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing the solubilization of membrane proteins from Escherichia coli membranes by styrene-maleic acid copolymers.
    Kopf AH; Dörr JM; Koorengevel MC; Antoniciello F; Jahn H; Killian JA
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183125. PubMed ID: 31738899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer.
    Oluwole AO; Danielczak B; Meister A; Babalola JO; Vargas C; Keller S
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1919-1924. PubMed ID: 28079955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification.
    Gulamhussein AA; Uddin R; Tighe BJ; Poyner DR; Rothnie AJ
    Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183281. PubMed ID: 32209303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Styrene Maleic Acid Lipid Particles as a Tool for Studies of Phage-Host Interactions.
    de Jonge PA; Smit Sibinga DJC; Boright OA; Costa AR; Nobrega FL; Brouns SJJ; Dutilh BE
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation.
    Hesketh SJ; Klebl DP; Higgins AJ; Thomsen M; Pickles IB; Sobott F; Sivaprasadarao A; Postis VLG; Muench SP
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183192. PubMed ID: 31945320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detergent Alternatives: Membrane Protein Purification Using Synthetic Nanodisc Polymers.
    Dimitrova VS; Song S; Karagiaridi A; Marand A; Pinkett HW
    Methods Mol Biol; 2022; 2507():375-387. PubMed ID: 35773593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular model for the solubilization of membranes into nanodisks by styrene maleic Acid copolymers.
    Scheidelaar S; Koorengevel MC; Pardo JD; Meeldijk JD; Breukink E; Killian JA
    Biophys J; 2015 Jan; 108(2):279-90. PubMed ID: 25606677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermotropic properties of phosphatidylcholine nanodiscs bounded by styrene-maleic acid copolymers.
    Dominguez Pardo JJ; Dörr JM; Renne MF; Ould-Braham T; Koorengevel MC; van Steenbergen MJ; Killian JA
    Chem Phys Lipids; 2017 Nov; 208():58-64. PubMed ID: 28923687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Poly(styrene- co-maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs.
    Hall SCL; Tognoloni C; Price GJ; Klumperman B; Edler KJ; Dafforn TR; Arnold T
    Biomacromolecules; 2018 Mar; 19(3):761-772. PubMed ID: 29272585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts.
    Angelisová P; Ballek O; Sýkora J; Benada O; Čajka T; Pokorná J; Pinkas D; Hořejší V
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):130-141. PubMed ID: 30463696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Polymer Composition and pH on Membrane Solubilization by Styrene-Maleic Acid Copolymers.
    Scheidelaar S; Koorengevel MC; van Walree CA; Dominguez JJ; Dörr JM; Killian JA
    Biophys J; 2016 Nov; 111(9):1974-1986. PubMed ID: 27806279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer.
    Orekhov PS; Bozdaganyan ME; Voskoboynikova N; Mulkidjanian AY; Steinhoff HJ; Shaitan KV
    Langmuir; 2019 Mar; 35(10):3748-3758. PubMed ID: 30773011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detergent-Free Membrane Protein Purification.
    Rothnie AJ
    Methods Mol Biol; 2016; 1432():261-7. PubMed ID: 27485341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs.
    Broecker J; Eger BT; Ernst OP
    Structure; 2017 Feb; 25(2):384-392. PubMed ID: 28089451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.