These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26639721)

  • 1. Molecular modeling of mechanism of action of anti-myasthenia gravis slow-binding inhibitor of acetylcholinesterase.
    Lushchekina S; Kots E; Kharlamova A; Petrov K; Masson P
    Int J Risk Saf Med; 2015; 27 Suppl 1():S74-5. PubMed ID: 26639721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrocyclic derivatives of 6-methyluracil: New ligands of the peripheral anionic site of acetylcholinesterase.
    Petrov K
    Int J Risk Saf Med; 2015; 27 Suppl 1():S72-3. PubMed ID: 26639720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow-binding inhibition of acetylcholinesterase by an alkylammonium derivative of 6-methyluracil: mechanism and possible advantages for myasthenia gravis treatment.
    Kharlamova AD; Lushchekina SV; Petrov KA; Kots ED; Nachon F; Villard-Wandhammer M; Zueva IV; Krejci E; Reznik VS; Zobov VV; Nikolsky EE; Masson P
    Biochem J; 2016 May; 473(9):1225-36. PubMed ID: 26929400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-binding reversible inhibitor of acetylcholinesterase with long-lasting action for prophylaxis of organophosphate poisoning.
    Lenina OA; Zueva IV; Zobov VV; Semenov VE; Masson P; Petrov KA
    Sci Rep; 2020 Oct; 10(1):16611. PubMed ID: 33024231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer's disease.
    Zueva IV; Semenov VE; Mukhamedyarov MA; Lushchekina SV; Kharlamova AD; Petukhova EO; Mikhailov AS; Podyachev SN; Saifina LF; Petrov KA; Minnekhanova OA; Zobov VV; Nikolsky EE; Masson P; Reznik VS
    Int J Risk Saf Med; 2015; 27 Suppl 1():S69-71. PubMed ID: 26639718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific inhibition of acetylcholinesterase as an approach to decrease muscarinic side effects during myasthenia gravis treatment.
    Petrov KA; Kharlamova AD; Lenina OA; Nurtdinov AR; Sitdykova ME; Ilyin VI; Zueva IV; Nikolsky EE
    Sci Rep; 2018 Jan; 8(1):304. PubMed ID: 29321572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel slow-binding reversible acetylcholinesterase inhibitors based on uracil moieties for possible treatment of myasthenia gravis and protection from organophosphate poisoning.
    Saifina LF; Abdalla M; Gubaidullina LM; Zueva IV; Eltayb WA; El-Arabey AA; Kharlamova AD; Lenina OA; Semenov VE; Petrov KA
    Eur J Med Chem; 2023 Jan; 246():114949. PubMed ID: 36462442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-547, a 6-methyluracil derivative with long-lasting binding and rebinding on acetylcholinesterase: Pharmacokinetic and pharmacodynamic studies.
    Petrov K; Zueva I; Kovyazina I; Sedov I; Lushchekina S; Kharlamova A; Lenina O; Koshkin S; Shtyrlin Y; Nikolsky E; Masson P
    Neuropharmacology; 2018 Mar; 131():304-315. PubMed ID: 29277489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.
    Vitorović-Todorović MD; Koukoulitsa C; Juranić IO; Mandić LM; Drakulić BJ
    Eur J Med Chem; 2014 Jun; 81():158-75. PubMed ID: 24836068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations.
    Xu Y; Shen J; Luo X; Silman I; Sussman JL; Chen K; Jiang H
    J Am Chem Soc; 2003 Sep; 125(37):11340-9. PubMed ID: 16220957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and in vitro screening of symmetrical bispyridinium cholinesterase inhibitors bearing different connecting linkage-initial study for Myasthenia gravis implications.
    Musilek K; Komloova M; Zavadova V; Holas O; Hrabinova M; Pohanka M; Dohnal V; Nachon F; Dolezal M; Kuca K; Jung YS
    Bioorg Med Chem Lett; 2010 Mar; 20(5):1763-6. PubMed ID: 20138518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.
    Lo R; Ganguly B
    Mol Biosyst; 2014 Jul; 10(9):2368-83. PubMed ID: 24964273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.
    Alpan AS; Parlar S; Carlino L; Tarikogullari AH; Alptüzün V; Güneş HS
    Bioorg Med Chem; 2013 Sep; 21(17):4928-37. PubMed ID: 23891231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.
    Fang J; Wu P; Yang R; Gao L; Li C; Wang D; Wu S; Liu AL; Du GH
    Acta Pharm Sin B; 2014 Dec; 4(6):430-7. PubMed ID: 26579414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis.
    Chadha N; Tiwari AK; Kumar V; Lal S; Milton MD; Mishra AK
    J Biomol Struct Dyn; 2015; 33(5):978-90. PubMed ID: 24805972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors.
    Gharaghani S; Khayamian T; Ebrahimi M
    SAR QSAR Environ Res; 2013; 24(9):773-94. PubMed ID: 23863115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformers of acetylcholinesterase: a mechanism of allosteric control.
    Taylor JL; Mayer RT; Himel CM
    Mol Pharmacol; 1994 Jan; 45(1):74-83. PubMed ID: 8302283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Therapy of myasthenia gravis with cholinesterase inhibitors--principles and pharmacologic monitoring].
    Henze T
    Fortschr Neurol Psychiatr; 1996 Mar; 64(3):110-21. PubMed ID: 8900891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.
    Di Pietro O; Viayna E; Vicente-García E; Bartolini M; Ramón R; Juárez-Jiménez J; Clos MV; Pérez B; Andrisano V; Luque FJ; Lavilla R; Muñoz-Torrero D
    Eur J Med Chem; 2014 Feb; 73():141-52. PubMed ID: 24389509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman.
    Gordon RK; Haigh JR; Garcia GE; Feaster SR; Riel MA; Lenz DE; Aisen PS; Doctor BP
    Chem Biol Interact; 2005 Dec; 157-158():239-46. PubMed ID: 16256090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.