These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26639792)

  • 1. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy.
    Davidowski SK; Lisowski CE; Yarger JL
    Magn Reson Chem; 2016 Mar; 54(3):234-8. PubMed ID: 26639792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.
    Davidowski SK; Holland GP
    Langmuir; 2016 Apr; 32(13):3253-61. PubMed ID: 26914738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CdSe Quantum Dots Functionalized with Chiral, Thiol-Free Carboxylic Acids: Unraveling Structural Requirements for Ligand-Induced Chirality.
    Varga K; Tannir S; Haynie BE; Leonard BM; Dzyuba SV; Kubelka J; Balaz M
    ACS Nano; 2017 Oct; 11(10):9846-9853. PubMed ID: 28956912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms.
    Aldeek F; Mustin C; Balan L; Roques-Carmes T; Fontaine-Aupart MP; Schneider R
    Biomaterials; 2011 Aug; 32(23):5459-70. PubMed ID: 21549423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of the Inorganic and Organic Shells on the Surface of CdSe Quantum Dots.
    Karpov ON; Bondarenko GN; Merekalov AS; Shandryuk GA; Zhigalina OM; Khmelenin DN; Skryleva EA; Golovan LA; Talroze RV
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36190-36200. PubMed ID: 34286582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the Thermodynamics of Ligand Binding to CsPbBr
    Smock SR; Williams TJ; Brutchey RL
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11711-11715. PubMed ID: 30051545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2008 May; 24(10):5514-20. PubMed ID: 18412378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots.
    Fritzinger B; Capek RK; Lambert K; Martins JC; Hens Z
    J Am Chem Soc; 2010 Jul; 132(29):10195-201. PubMed ID: 20608680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: a procedure guided by computational studies.
    Pong BK; Trout BL; Lee JY
    Langmuir; 2008 May; 24(10):5270-6. PubMed ID: 18412382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrocene-coated CdSe/ZnS quantum dots as electroactive nanoparticles hybrids.
    Dorokhin D; Tomczak N; Reinhoudt DN; Velders AH; Vancso GJ
    Nanotechnology; 2010 Jul; 21(28):285703. PubMed ID: 20585158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ ligand exchange of thiol-capped CuInS2/ZnS quantum dots at growth stage without affecting luminescent characteristics.
    Kim H; Suh M; Kwon BH; Jang DS; Kim SW; Jeon DY
    J Colloid Interface Sci; 2011 Nov; 363(2):703-6. PubMed ID: 21855886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed field gradient NMR studies of polymer adsorption on colloidal CdSe quantum dots.
    Shen L; Soong R; Wang M; Lee A; Wu C; Scholes GD; Macdonald PM; Winnik MA
    J Phys Chem B; 2008 Feb; 112(6):1626-33. PubMed ID: 18201077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors.
    Ding K; Jing L; Liu C; Hou Y; Gao M
    Biomaterials; 2014 Feb; 35(5):1608-17. PubMed ID: 24239108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CdSe Quantum Rod Formation Aided By In Situ TOPO Oxidation.
    Wolcott A; Fitzmorris RC; Muzaffery O; Zhang JZ
    Chem Mater; 2010; 22(9):2814-2821. PubMed ID: 20473338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsaturated Ligands Seed an Order to Disorder Transition in Mixed Ligand Shells of CdSe/CdS Quantum Dots.
    Balan AD; Olshansky JH; Horowitz Y; Han HL; O'Brien EA; Tang L; Somorjai GA; Alivisatos AP
    ACS Nano; 2019 Dec; 13(12):13784-13796. PubMed ID: 31751115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical properties and shape evolution of CdSe QDs in a non-injection reaction.
    Park E; Ryu J; Choi Y; Hwang KJ; Song R
    Nanotechnology; 2013 Apr; 24(14):145601. PubMed ID: 23508062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size reduction of CdSe/ZnS quantum dots by a peptidic amyloid supergelator.
    Zaman MB; Bardelang D; Prakesch M; Leek DM; Naubron JV; Chan G; Wu X; Ripmeester JA; Ratcliffe CI; Yu K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1178-81. PubMed ID: 22329959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots.
    Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H
    ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.