BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26640115)

  • 21. Recent advances in direct cardiac reprogramming.
    Srivastava D; Yu P
    Curr Opin Genet Dev; 2015 Oct; 34():77-81. PubMed ID: 26454285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Promise of Cardiac Regeneration by In Situ Lineage Conversion.
    Nam YJ; Munshi NV
    Circulation; 2017 Mar; 135(10):914-916. PubMed ID: 28264888
    [No Abstract]   [Full Text] [Related]  

  • 23. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction.
    Ma H; Wang L; Liu J; Qian L
    Methods Mol Biol; 2017; 1521():69-88. PubMed ID: 27910042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiac repair with thymosin β4 and cardiac reprogramming factors.
    Srivastava D; Ieda M; Fu J; Qian L
    Ann N Y Acad Sci; 2012 Oct; 1270():66-72. PubMed ID: 23050819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The heart of cardiac reprogramming: The cardiac fibroblasts.
    Ricketts SN; Qian L
    J Mol Cell Cardiol; 2022 Nov; 172():90-99. PubMed ID: 36007393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Less may be more: Using small molecules to reprogram human cells into functional cardiomyocytes.
    Kota PS; Naguib MR; Patel V; Rosengart TK
    J Thorac Cardiovasc Surg; 2017 Jan; 153(1):128-130. PubMed ID: 27726873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular reprogramming of fibroblasts in heart regeneration.
    Chi C; Song K
    J Mol Cell Cardiol; 2023 Jul; 180():84-93. PubMed ID: 36965699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction.
    Miyamoto K; Akiyama M; Tamura F; Isomi M; Yamakawa H; Sadahiro T; Muraoka N; Kojima H; Haginiwa S; Kurotsu S; Tani H; Wang L; Qian L; Inoue M; Ide Y; Kurokawa J; Yamamoto T; Seki T; Aeba R; Yamagishi H; Fukuda K; Ieda M
    Cell Stem Cell; 2018 Jan; 22(1):91-103.e5. PubMed ID: 29276141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction.
    Camelliti P; Devlin GP; Matthews KG; Kohl P; Green CR
    Cardiovasc Res; 2004 May; 62(2):415-25. PubMed ID: 15094361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regenerative medicine: Reprogramming the injured heart.
    Palpant NJ; Murry CE
    Nature; 2012 May; 485(7400):585-6. PubMed ID: 22660313
    [No Abstract]   [Full Text] [Related]  

  • 31. Cardiac-mimetic cell-culture system for direct cardiac reprogramming.
    Song SY; Yoo J; Go S; Hong J; Sohn HS; Lee JR; Kang M; Jeong GJ; Ryu S; Kim SHL; Hwang NS; Char K; Kim BS
    Theranostics; 2019; 9(23):6734-6744. PubMed ID: 31660065
    [No Abstract]   [Full Text] [Related]  

  • 32. Discovery and progress of direct cardiac reprogramming.
    Kojima H; Ieda M
    Cell Mol Life Sci; 2017 Jun; 74(12):2203-2215. PubMed ID: 28197667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails.
    Fu Y; Huang C; Xu X; Gu H; Ye Y; Jiang C; Qiu Z; Xie X
    Cell Res; 2015 Sep; 25(9):1013-24. PubMed ID: 26292833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MicroRNAs and Cardiac Regeneration.
    Hodgkinson CP; Kang MH; Dal-Pra S; Mirotsou M; Dzau VJ
    Circ Res; 2015 May; 116(10):1700-11. PubMed ID: 25953925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes.
    Yang L; Xue S; Du M; Lian F
    Int J Nanomedicine; 2021; 16():3741-3754. PubMed ID: 34113099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes.
    Jahng JWS; Zhang M; Wu JC
    Semin Cell Dev Biol; 2022 Feb; 122():56-65. PubMed ID: 34074592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of direct cardiac reprogramming for clinical applications.
    Yamada Y; Sadahiro T; Ieda M
    J Mol Cell Cardiol; 2023 May; 178():1-8. PubMed ID: 36918145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming.
    Ieda M
    Circ J; 2016 Sep; 80(10):2081-8. PubMed ID: 27599529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Reprogramming-The Future of Cardiac Regeneration?
    Doppler SA; Deutsch MA; Lange R; Krane M
    Int J Mol Sci; 2015 Jul; 16(8):17368-93. PubMed ID: 26230692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Direct reprogramming from fibroblasts into cardiamyocytes].
    Xu Z; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2017 Jul; 33(7):1069-1074. PubMed ID: 28869726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.