These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26640115)

  • 41. Direct cardiac reprogramming: from developmental biology to cardiac regeneration.
    Qian L; Srivastava D
    Circ Res; 2013 Sep; 113(7):915-21. PubMed ID: 24030021
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.
    Liu Z; Wang L; Welch JD; Ma H; Zhou Y; Vaseghi HR; Yu S; Wall JB; Alimohamadi S; Zheng M; Yin C; Shen W; Prins JF; Liu J; Qian L
    Nature; 2017 Nov; 551(7678):100-104. PubMed ID: 29072293
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
    Sadahiro T; Yamanaka S; Ieda M
    Circ Res; 2015 Apr; 116(8):1378-91. PubMed ID: 25858064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes.
    Liu Z; Chen O; Zheng M; Wang L; Zhou Y; Yin C; Liu J; Qian L
    Stem Cell Res; 2016 Mar; 16(2):507-18. PubMed ID: 26957038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis.
    Muraoka N; Ieda M
    Annu Rev Physiol; 2014; 76():21-37. PubMed ID: 24079415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dimethyl sulfoxide (DMSO) enhances direct cardiac reprogramming by inhibiting the bromodomain of coactivators CBP/p300.
    Lim CK; Efthymios M; Tan W; Autio MI; Tiang Z; Li PY; Foo RSY
    J Mol Cell Cardiol; 2021 Nov; 160():15-26. PubMed ID: 34146546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells.
    Patel V; Singh VP; Pinnamaneni JP; Sanagasetti D; Olive J; Mathison M; Cooney A; Flores ER; Crystal RG; Yang J; Rosengart TK
    J Thorac Cardiovasc Surg; 2018 Aug; 156(2):556-565.e1. PubMed ID: 29716728
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier.
    Chang Y; Lee E; Kim J; Kwon YW; Kwon Y; Kim J
    Biomaterials; 2019 Feb; 192():500-509. PubMed ID: 30513475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit(+) Cardiac Progenitor Cells.
    Pratico ED; Feger BJ; Watson MJ; Sullenger BA; Bowles DE; Milano CA; Nair SK
    Stem Cells Dev; 2015 Nov; 24(22):2622-33. PubMed ID: 26176491
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Persistent phenotypic shift in cardiac fibroblasts: impact of transient renin angiotensin system inhibition.
    Hale TM
    J Mol Cell Cardiol; 2016 Apr; 93():125-32. PubMed ID: 26631495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction.
    Li XH; Li Q; Jiang L; Deng C; Liu Z; Fu Y; Zhang M; Tan H; Feng Y; Shan Z; Wang J; Yu XY
    Stem Cells Transl Med; 2015 Dec; 4(12):1415-24. PubMed ID: 26564862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production of Cardiomyocytes by microRNA-Mediated Reprogramming in Optimized Reprogramming Media.
    Wang X; Hodgkinson CP; Dzau VJ
    Methods Mol Biol; 2021; 2239():47-59. PubMed ID: 33226612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Matrix identity and tractional forces influence indirect cardiac reprogramming.
    Kong YP; Carrion B; Singh RK; Putnam AJ
    Sci Rep; 2013 Dec; 3():3474. PubMed ID: 24326998
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo reprogramming for heart disease.
    Xu H; Yi BA; Chien KR
    Cell Res; 2012 Nov; 22(11):1521-3. PubMed ID: 22751090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cardiomyocyte precursors generated by direct reprogramming and molecular beacon selection attenuate ventricular remodeling after experimental myocardial infarction.
    Bachamanda Somesh D; Klose K; Maring JA; Kunkel D; Jürchott K; Protze SI; Klein O; Nebrich G; Becker M; Krüger U; Nazari-Shafti TZ; Falk V; Kurtz A; Gossen M; Stamm C
    Stem Cell Res Ther; 2023 Oct; 14(1):296. PubMed ID: 37840130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fibroblast transition to an endothelial "trans" state improves cell reprogramming efficiency.
    Mathison M; Sanagasetti D; Singh VP; Pugazenthi A; Pinnamaneni JP; Ryan CT; Yang J; Rosengart TK
    Sci Rep; 2021 Nov; 11(1):22605. PubMed ID: 34799643
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing Cardiomyocyte Subtypes Following Transcription Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts.
    Fernandez-Perez A; Munshi NV
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362413
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct reprogramming of cardiac fibroblasts to cardiomyocytes using microRNAs.
    Jayawardena T; Mirotsou M; Dzau VJ
    Methods Mol Biol; 2014; 1150():263-72. PubMed ID: 24744005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimizing delivery for efficient cardiac reprogramming.
    Kang MH; Hu J; Pratt RE; Hodgkinson CP; Asokan A; Dzau VJ
    Biochem Biophys Res Commun; 2020 Nov; 533(1):9-16. PubMed ID: 32917363
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum.
    Wystrychowski W; Patlolla B; Zhuge Y; Neofytou E; Robbins RC; Beygui RE
    Stem Cell Res Ther; 2016 Jun; 7(1):84. PubMed ID: 27296220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.