These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26640426)

  • 1. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification.
    Huang H; Choi JK; Rao W; Zhao S; Agarwal P; Zhao G; He X
    Adv Funct Mater; 2015 Nov; 25(44):6939-6850. PubMed ID: 26640426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Suppression Effect of Magnetic Induction Heating and Microencapsulation on Ice Crystallization Enables Low-Cryoprotectant Vitrification of Stem Cell-Alginate Hydrogel Constructs.
    Liu X; Zhao G; Chen Z; Panhwar F; He X
    ACS Appl Mater Interfaces; 2018 May; 10(19):16822-16835. PubMed ID: 29688697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Unusual Properties of Polytetrafluoroethylene Enable Massive-Volume Vitrification of Stem Cells with Low-Concentration Cryoprotectants.
    Cao Y; Zhao G; Panhwar F; Zhang X; Chen Z; Cheng L; Zang C; Liu F; Zhao Y; He X
    Adv Mater Technol; 2019 Jan; 4(1):. PubMed ID: 31448319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to successful mL to L scale vitrification and rewarming.
    Gangwar L; Phatak SS; Etheridge M; Bischof JC
    Cryo Letters; 2022; 43(6):316-321. PubMed ID: 36629824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles of Ice-Free Cryopreservation by Vitrification.
    Fahy GM; Wowk B
    Methods Mol Biol; 2021; 2180():27-97. PubMed ID: 32797408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supplemented phase diagrams for vitrification CPA cocktails: DP6, VS55 and M22.
    Han Z; Gangwar L; Magnuson E; Etheridge ML; Pringle CO; Bischof JC; Choi J
    Cryobiology; 2022 Jun; 106():113-121. PubMed ID: 35276219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents.
    Devireddy RV; Swanlund DJ; Roberts KP; Bischof JC
    Biol Reprod; 1999 Sep; 61(3):764-75. PubMed ID: 10456855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microencapsulation Facilitates Low-Cryoprotectant Vitrification of Human Umbilical Vein Endothelial Cells.
    Li Y; Memon K; Zheng Y; Cheng Y; Mbogba MK; Wang P; Ouyang X; Zhao G
    ACS Biomater Sci Eng; 2019 Oct; 5(10):5273-5283. PubMed ID: 33455232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification.
    Zhang W; Yang G; Zhang A; Xu LX; He X
    Biomed Microdevices; 2010 Feb; 12(1):89-96. PubMed ID: 19787454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation.
    Zhan L; Guo SZ; Kangas J; Shao Q; Shiao M; Khosla K; Low WC; McAlpine MC; Bischof J
    Adv Sci (Weinh); 2021 Jun; 8(11):2004605. PubMed ID: 34141523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower intracellular concentration of cryoprotectants after vitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions.
    Vanderzwalmen P; Connan D; Grobet L; Wirleitner B; Remy B; Vanderzwalmen S; Zech N; Ectors FJ
    Hum Reprod; 2013 Aug; 28(8):2101-10. PubMed ID: 23592220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.
    Jiao A; Han X; Critser JK; Ma H
    Cryobiology; 2006 Jun; 52(3):386-92. PubMed ID: 16616118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice.
    Seki S; Mazur P
    Biol Reprod; 2008 Oct; 79(4):727-37. PubMed ID: 18562703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures.
    Elliott GD; Wang S; Fuller BJ
    Cryobiology; 2017 Jun; 76():74-91. PubMed ID: 28428046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Release of Cryoprotectants by Near-Infrared Irradiation for Improved Cell Cryopreservation.
    Cheepa FF; Zhao G; Panhwar F; Memon K
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2520-2529. PubMed ID: 34028256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the assessment of the stability of vitrified cryo-media by differential scanning calorimetry: A new tool for biobanks to derive standard operating procedures for storage, access and transport.
    Kreiner A; Stracke F; Zimmermann H
    Cryobiology; 2019 Aug; 89():26-34. PubMed ID: 31202961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical model of intracellular devitrification.
    Karlsson JO
    Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of rabbit semen: comparing the effects of different cryoprotectants, cryoprotectant-free vitrification, and the use of albumin plus osmoprotectants on sperm survival and fertility after standard vapor freezing and vitrification.
    Rosato MP; Iaffaldano N
    Theriogenology; 2013 Feb; 79(3):508-16. PubMed ID: 23218394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquidus Tracking: Large scale preservation of encapsulated 3-D cell cultures using a vitrification machine.
    Puschmann E; Selden C; Butler S; Fuller B
    Cryobiology; 2017 Jun; 76():65-73. PubMed ID: 28442251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.