BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 26640474)

  • 1. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice.
    Lucena C; Romera FJ; García MJ; Alcántara E; Pérez-Vicente R
    Front Plant Sci; 2015; 6():1056. PubMed ID: 26640474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene and Nitric Oxide Involvement in the Regulation of Fe and P Deficiency Responses in Dicotyledonous Plants.
    García MJ; Lucena C; Romera FJ
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A shoot derived long distance iron signal may act upstream of the IMA peptides in the regulation of Fe deficiency responses in
    García MJ; Angulo M; Romera FJ; Lucena C; Pérez-Vicente R
    Front Plant Sci; 2022; 13():971773. PubMed ID: 36105702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies.
    García MJ; Romera FJ; Lucena C; Alcántara E; Pérez-Vicente R
    Plant Physiol; 2015 Sep; 169(1):51-60. PubMed ID: 26175512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene and Phloem Signals Are Involved in the Regulation of Responses to Fe and P Deficiencies in Roots of Strategy I Plants.
    Lucena C; Porras R; García MJ; Alcántara E; Pérez-Vicente R; Zamarreño ÁM; Bacaicoa E; García-Mina JM; Smith AP; Romera FJ
    Front Plant Sci; 2019; 10():1237. PubMed ID: 31649701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants.
    Romera FJ; García MJ; Lucena C; Angulo M; Pérez-Vicente R
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa.
    Wu J; Wang C; Zheng L; Wang L; Chen Y; Whelan J; Shou H
    J Exp Bot; 2011 Jan; 62(2):667-74. PubMed ID: 21112958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Ethylene Signaling in the Crosstalk Between Fe, S, and P Deficiency Responses in
    García MJ; Angulo M; García C; Lucena C; Alcántara E; Pérez-Vicente R; Romera FJ
    Front Plant Sci; 2021; 12():643585. PubMed ID: 33859661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy I plants.
    Romera FJ; Alcántara E
    Funct Plant Biol; 2004 May; 31(4):315-328. PubMed ID: 32688902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Iron Acquisition in Rice by the Mugineic Acid Synthase Gene With Ferric Iron Reductase Gene and
    Masuda H; Aung MS; Kobayashi T; Hamada T; Nishizawa NK
    Front Plant Sci; 2019; 10():1179. PubMed ID: 31681346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.
    Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK
    PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Study of Several Fe Deficiency Responses in the
    Angulo M; García MJ; Alcántara E; Pérez-Vicente R; Romera FJ
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33573082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NH
    Zhang X; Liu H; Zhang S; Wang J; Wei C
    Sci Rep; 2019 Sep; 9(1):12712. PubMed ID: 31481724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by Strategy I plants.
    Romera FJ; García MJ; Alcántara E; Pérez-Vicente R
    Plant Signal Behav; 2011 Jan; 6(1):167-70. PubMed ID: 21248474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil.
    Ishimaru Y; Kim S; Tsukamoto T; Oki H; Kobayashi T; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7373-8. PubMed ID: 17449639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches.
    Li W; Lan P
    Front Plant Sci; 2017; 8():40. PubMed ID: 28174585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivar variability of iron uptake mechanisms in rice (Oryza sativa L.).
    Pereira MP; Santos C; Gomes A; Vasconcelos MW
    Plant Physiol Biochem; 2014 Dec; 85():21-30. PubMed ID: 25394797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice.
    Kobayashi T; Nagano AJ; Nishizawa NK
    J Exp Bot; 2021 Mar; 72(6):2196-2211. PubMed ID: 33206982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes.
    Wu Q; Liu C; Wang Z; Gao T; Liu Y; Xia Y; Yin R; Qi M
    Environ Pollut; 2022 Mar; 297():118818. PubMed ID: 35016986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonate-Induced Chemical Reductants Are Responsible for Iron Acquisition in Strategy I Wild Herbaceous Plants Native to Calcareous Grasslands.
    Wang B; Wei H; Chen Z; Li Y; Zhang WH
    Plant Cell Physiol; 2022 Jun; 63(6):770-784. PubMed ID: 35348776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.