These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26640602)

  • 1. An Adaptive Genetic Association Test Using Double Kernel Machines.
    Zhan X; Epstein MP; Ghosh D
    Stat Biosci; 2015 Oct; 7(2):262-281. PubMed ID: 26640602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models.
    Liu D; Ghosh D; Lin X
    BMC Bioinformatics; 2008 Jun; 9():292. PubMed ID: 18577223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powerful tests for detecting a gene effect in the presence of possible gene-gene interactions using garrote kernel machines.
    Maity A; Lin X
    Biometrics; 2011 Dec; 67(4):1271-84. PubMed ID: 21504419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible variable selection for recovering sparsity in nonadditive nonparametric models.
    Fang Z; Kim I; Schaumont P
    Biometrics; 2016 Dec; 72(4):1155-1163. PubMed ID: 27077330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prioritizing individual genetic variants after kernel machine testing using variable selection.
    He Q; Cai T; Liu Y; Zhao N; Harmon QE; Almli LM; Binder EB; Engel SM; Ressler KJ; Conneely KN; Lin X; Wu MC
    Genet Epidemiol; 2016 Dec; 40(8):722-731. PubMed ID: 27488097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models.
    Liu D; Lin X; Ghosh D
    Biometrics; 2007 Dec; 63(4):1079-88. PubMed ID: 18078480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the use of kernel machines for Mendelian randomization.
    Zhang W; Ghosh D
    Quant Biol; 2017 Dec; 5(4):368-379. PubMed ID: 30221016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test.
    Cai T; Lin X; Carroll RJ
    Biostatistics; 2012 Sep; 13(4):776-90. PubMed ID: 22734045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Restricted Kernel Machines Using Conjugate Feature Duality.
    Suykens JAK
    Neural Comput; 2017 Aug; 29(8):2123-2163. PubMed ID: 28562217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing gene-environment interactions in gene-based association studies.
    Wang X; Qin H; Morris NJ; Zhu X; Elston RC
    BMC Proc; 2011 Nov; 5 Suppl 9(Suppl 9):S26. PubMed ID: 22373316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection.
    Wu MC; Zhang L; Wang Z; Christiani DC; Lin X
    Bioinformatics; 2009 May; 25(9):1145-51. PubMed ID: 19168911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying and exploiting gene-pathway interactions from RNA-seq data for binary phenotype.
    Shao F; Wang Y; Zhao Y; Yang S
    BMC Genet; 2019 Mar; 20(1):36. PubMed ID: 30890140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic subset selection for learning with kernel machines.
    Rhinelander J; Liu XP
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):616-26. PubMed ID: 22049369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite kernel machine regression based on likelihood ratio test for joint testing of genetic and gene-environment interaction effect.
    Zhao N; Zhang H; Clark JJ; Maity A; Wu MC
    Biometrics; 2019 Jun; 75(2):625-637. PubMed ID: 30430548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.
    Lima CA; Coelho AL
    Artif Intell Med; 2011 Oct; 53(2):83-95. PubMed ID: 21852077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).
    Urrutia E; Lee S; Maity A; Zhao N; Shen J; Li Y; Wu MC
    Stat Interface; 2015; 8(4):495-505. PubMed ID: 26740853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small-sample multivariate kernel machine test for microbiome association studies.
    Zhan X; Tong X; Zhao N; Maity A; Wu MC; Chen J
    Genet Epidemiol; 2017 Apr; 41(3):210-220. PubMed ID: 28019040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PaIRKAT: A pathway integrated regression-based kernel association test with applications to metabolomics and COPD phenotypes.
    Carpenter CM; Zhang W; Gillenwater L; Severn C; Ghosh T; Bowler R; Kechris K; Ghosh D
    PLoS Comput Biol; 2021 Oct; 17(10):e1008986. PubMed ID: 34679079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust kernel association testing (RobKAT).
    Martinez K; Maity A; Yolken RH; Sullivan PF; Tzeng JY
    Genet Epidemiol; 2020 Apr; 44(3):272-282. PubMed ID: 31943371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kalpra: A kernel approach for longitudinal pathway regression analysis integrating network information with an application to the longitudinal PsyCourse Study.
    Wendel B; Heidenreich M; Budde M; Heilbronner M; Oraki Kohshour M; Papiol S; Falkai P; Schulze TG; Heilbronner U; Bickeböller H
    Front Genet; 2022; 13():1015885. PubMed ID: 36561312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.