These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26641053)

  • 1. Technical Note: Predicting ruminal methane inhibition by condensed tannins using nonlinear exponential decay regression analysis.
    Naumann HD; Tedeschi LO; Fonseca MA
    J Anim Sci; 2015 Nov; 93(11):5341-5. PubMed ID: 26641053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of replacing alfalfa with panicled-tick clover or sericea lespedeza in corn-alfalfa-based substrates on in vitro ruminal methane production.
    Naumann HD; Lambert BD; Armstrong SA; Fonseca MA; Tedeschi LO; Muir JP; Ellersieck MR
    J Dairy Sci; 2015 Jun; 98(6):3980-7. PubMed ID: 25864051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat pasture bloat dynamics, in vitro ruminal gas production, and potential bloat mitigation with condensed tannins.
    Min BR; Pinchak WE; Fulford JD; Puchala R
    J Anim Sci; 2005 Jun; 83(6):1322-31. PubMed ID: 15890809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro.
    Hassanat F; Benchaar C
    J Sci Food Agric; 2013 Jan; 93(2):332-9. PubMed ID: 22740383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.
    Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ
    J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep.
    Rira M; Morgavi DP; Archimède H; Marie-Magdeleine C; Popova M; Bousseboua H; Doreau M
    J Anim Sci; 2015 Jan; 93(1):334-47. PubMed ID: 25568379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of equations for predicting methane emissions from ruminants.
    Ramin M; Huhtanen P
    J Dairy Sci; 2013 Apr; 96(4):2476-2493. PubMed ID: 23403199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population.
    Bhatta R; Saravanan M; Baruah L; Sampath KT; Prasad CS
    J Appl Microbiol; 2013 Aug; 115(2):455-65. PubMed ID: 23621853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a conceptual model of possible benefits of condensed tannins for ruminant production.
    Tedeschi LO; Ramírez-Restrepo CA; Muir JP
    Animal; 2014 Jul; 8(7):1095-105. PubMed ID: 24784919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics.
    Hatew B; Stringano E; Mueller-Harvey I; Hendriks WH; Carbonero CH; Smith LM; Pellikaan WF
    J Anim Physiol Anim Nutr (Berl); 2016 Apr; 100(2):348-60. PubMed ID: 25960083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro ruminal fermentation characteristics and utilisable CP supply of sainfoin and birdsfoot trefoil silages and their mixtures with other legumes.
    Grosse Brinkhaus A; Wyss U; Arrigo Y; Girard M; Bee G; Zeitz JO; Kreuzer M; Dohme-Meier F
    Animal; 2017 Apr; 11(4):580-590. PubMed ID: 28302185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep.
    Liu H; Vaddella V; Zhou D
    J Dairy Sci; 2011 Dec; 94(12):6069-77. PubMed ID: 22118094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of different fresh-cut forages and their hays on feed intake, digestibility, heat production, and ruminal methane emission by Boer x Spanish goats.
    Puchala R; Animut G; Patra AK; Detweiler GD; Wells JE; Varel VH; Sahlu T; Goetsch AL
    J Anim Sci; 2012 Aug; 90(8):2754-62. PubMed ID: 22408087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane production and diurnal variation measured in dairy cows and predicted from fermentation pattern and nutrient or carbon flow.
    Brask M; Weisbjerg MR; Hellwing AL; Bannink A; Lund P
    Animal; 2015 Nov; 9(11):1795-806. PubMed ID: 26245140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane production, nutrient digestion, ruminal fermentation, N balance, and milk production of cows fed timothy silage- or alfalfa silage-based diets.
    Hassanat F; Gervais R; Massé DI; Petit HV; Benchaar C
    J Dairy Sci; 2014 Oct; 97(10):6463-74. PubMed ID: 25064648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds.
    Mohammed R; McGinn SM; Beauchemin KA
    J Dairy Sci; 2011 Dec; 94(12):6057-68. PubMed ID: 22118093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat.
    Min BR; Pinchak WE; Anderson RC; Fulford JD; Puchala R
    J Anim Sci; 2006 Sep; 84(9):2546-54. PubMed ID: 16908660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of bacterial direct-fed microbials for their antimethanogenic potential in vitro and assessment of their effect on ruminal fermentation and microbial profiles in sheep.
    Jeyanathan J; Martin C; Morgavi DP
    J Anim Sci; 2016 Feb; 94(2):739-50. PubMed ID: 27065144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fibrolytic enzyme additive for lactating Holstein cow diets: ruminal fermentation, rumen microbial populations, and enteric methane emissions.
    Chung YH; Zhou M; Holtshausen L; Alexander TW; McAllister TA; Guan LL; Oba M; Beauchemin KA
    J Dairy Sci; 2012 Mar; 95(3):1419-27. PubMed ID: 22365224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets.
    McDonnell RP; Hart KJ; Boland TM; Kelly AK; McGee M; Kenny DA
    J Anim Sci; 2016 Mar; 94(3):1179-93. PubMed ID: 27065279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.