These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26641156)

  • 21. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.
    Peng S; Tian D; Yang X; Deng W
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4831-41. PubMed ID: 24593862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhydrophobic aluminum alloy surfaces by a novel one-step process.
    Saleema N; Sarkar DK; Paynter RW; Chen XG
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2500-2. PubMed ID: 20812666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.
    Diwan A; Jensen DS; Gupta V; Johnson BI; Evans D; Telford C; Linford MR
    J Nanosci Nanotechnol; 2015 Dec; 15(12):10022-36. PubMed ID: 26682448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination.
    Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS
    Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superhydrophobic aluminum surfaces by deposition of micelles of fluorinated block copolymers.
    Desbief S; Grignard B; Detrembleur C; Rioboo R; Vaillant A; Seveno D; Voué M; De Coninck J; Jonas AM; Jérôme C; Damman P; Lazzaroni R
    Langmuir; 2010 Feb; 26(3):2057-67. PubMed ID: 19761260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis.
    Hozumi A; Cheng DF; Yagihashi M
    J Colloid Interface Sci; 2011 Jan; 353(2):582-7. PubMed ID: 20970808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-surface energy surfactants with branched hydrocarbon architectures.
    Alexander S; Smith GN; James C; Rogers SE; Guittard F; Sagisaka M; Eastoe J
    Langmuir; 2014 Apr; 30(12):3413-21. PubMed ID: 24617649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.
    Xu L; Karunakaran RG; Guo J; Yang S
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1118-25. PubMed ID: 22292419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic stability of nanotube array surfaces under impact and static forces.
    Zhu L; Shi P; Xue J; Wang Y; Chen Q; Ding J; Wang Q
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8073-9. PubMed ID: 24873475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of Robust Superhydrophobic Surfaces with Dual-Curing Siloxane Resin and Controlled Dispersion of Nanoparticles.
    Kim H; Nam K; Lee DY
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32630526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces.
    Cohen N; Dotan A; Dodiuk H; Kenig S
    Langmuir; 2016 Sep; 32(37):9664-75. PubMed ID: 27578298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of nanoroughness on highly hydrophobic and superhydrophobic coatings.
    Mammen L; Deng X; Untch M; Vijayshankar D; Papadopoulos P; Berger R; Riccardi E; Leroy F; Vollmer D
    Langmuir; 2012 Oct; 28(42):15005-14. PubMed ID: 23030055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH- and voltage-switchable superhydrophobic surfaces by electro-copolymerization of EDOT derivatives containing carboxylic acids and long alkyl chains.
    Darmanin T; Guittard F
    Chemphyschem; 2013 Aug; 14(11):2529-33. PubMed ID: 23720228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responsive colloidal systems: reversible aggregation and fabrication of superhydrophobic surfaces.
    Motornov M; Sheparovych R; Lupitskyy R; MacWilliams E; Minko S
    J Colloid Interface Sci; 2007 Jun; 310(2):481-8. PubMed ID: 17335841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film.
    Lin Z; Liu Y; Wong CP
    Langmuir; 2010 Oct; 26(20):16110-4. PubMed ID: 20857962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.
    Lee JP; Choi S; Park S
    Langmuir; 2011 Jan; 27(2):809-14. PubMed ID: 21162520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The anti-soiling performance of highly reflective superhydrophobic nanoparticle-textured mirrors.
    Jang GG; Smith DB; List FA; Lee DF; Ievlev AV; Collins L; Park J; Polizos G
    Nanoscale; 2018 Aug; 10(30):14600-14612. PubMed ID: 30028465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.
    Yokoi N; Manabe K; Tenjimbayashi M; Shiratori S
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4809-16. PubMed ID: 25625787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles.
    Ebert D; Bhushan B
    Langmuir; 2012 Aug; 28(31):11391-9. PubMed ID: 22765167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformation of a simple plastic into a superhydrophobic surface.
    Erbil HY; Demirel AL; Avci Y; Mert O
    Science; 2003 Feb; 299(5611):1377-80. PubMed ID: 12610300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.