These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26641239)

  • 41. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.
    Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient Authentication Protocol and Its Application in Resonant Inductive Coupling Wireless Power Transfer Systems.
    Ahene E; Ofori-Oduro M; Twum F; Walker J; Missah YM
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960339
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Energy-efficient adaptive modulation in wireless communication for implanted medical devices.
    Qiu Y; Haley D; Chen Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():918-21. PubMed ID: 25570109
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wireless power transfer for a pacemaker application.
    Vulfin V; Sayfan-Altman S; Ianconescu R
    J Med Eng Technol; 2017 May; 41(4):325-332. PubMed ID: 28301285
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wireless power delivery for retinal prostheses.
    Ng DC; Williams CE; Allen PJ; Bai S; Boyd CS; Meffin H; Halpern ME; Skafidas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8356-60. PubMed ID: 22256285
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploiting Self-Capacitances for Wireless Power Transfer.
    Alazzawi Y; Aono K; Scheller EL; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):425-434. PubMed ID: 30794517
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.
    Wang S; Xu J; Wang W; Wang GN; Rastak R; Molina-Lopez F; Chung JW; Niu S; Feig VR; Lopez J; Lei T; Kwon SK; Kim Y; Foudeh AM; Ehrlich A; Gasperini A; Yun Y; Murmann B; Tok JB; Bao Z
    Nature; 2018 Mar; 555(7694):83-88. PubMed ID: 29466334
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-performance, stretchable, wire-shaped supercapacitors.
    Chen T; Hao R; Peng H; Dai L
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):618-22. PubMed ID: 25404509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO
    Lv Z; Luo Y; Tang Y; Wei J; Zhu Z; Zhou X; Li W; Zeng Y; Zhang W; Zhang Y; Qi D; Pan S; Loh XJ; Chen X
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29134702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Materials for bioresorbable radio frequency electronics.
    Hwang SW; Huang X; Seo JH; Song JK; Kim S; Hage-Ali S; Chung HJ; Tao H; Omenetto FG; Ma Z; Rogers JA
    Adv Mater; 2013 Jul; 25(26):3526-31. PubMed ID: 23681956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
    Lou Z; Li L; Wang L; Shen G
    Small; 2017 Dec; 13(45):. PubMed ID: 29076297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors.
    Huang Y; Huang Y; Meng W; Zhu M; Xue H; Lee CS; Zhi C
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2569-74. PubMed ID: 25569836
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Solution-Processable, Omnidirectionally Stretchable, and High-Pressure-Sensitive Piezoresistive Device.
    Roh E; Lee HB; Kim DI; Lee NE
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28960525
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of simple wireless neurostimulators and sensors.
    Gulick DW; Towe BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3130-3. PubMed ID: 25570654
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A stretchable and flexible system for skin-mounted measurement of motion tracking and physiological signals.
    Pinghung Wei ; Raj M; Yung-Yu Hsu ; Morey B; DePetrillo P; McGrane B; Xianyan Wang ; Lin M; Keen B; Papakyrikos C; Lowe J; Ghaffari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5772-5. PubMed ID: 25571307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel-Elastomer Ionic Sensors for Hand-Motion Monitoring.
    Gu G; Xu H; Peng S; Li L; Chen S; Lu T; Guo X
    Soft Robot; 2019 Jun; 6(3):368-376. PubMed ID: 30848994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flexible, Stretchable, and Transparent Planar Microsupercapacitors Based on 3D Porous Laser-Induced Graphene.
    Song W; Zhu J; Gan B; Zhao S; Wang H; Li C; Wang J
    Small; 2018 Jan; 14(1):. PubMed ID: 29148212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic and galvanic stability of stretchable supercapacitors.
    Li X; Gu T; Wei B
    Nano Lett; 2012 Dec; 12(12):6366-71. PubMed ID: 23167804
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stretchable Loudspeaker using Liquid Metal Microchannel.
    Jin SW; Park J; Hong SY; Park H; Jeong YR; Park J; Lee SS; Ha JS
    Sci Rep; 2015 Jul; 5():11695. PubMed ID: 26181209
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.