BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 26641326)

  • 1. Phosphorus Characterization and Contribution from Eroding Streambank Soils of Vermont's Lake Champlain Basin.
    Ishee ER; Ross DS; Garvey KM; Bourgault RR; Ford CR
    J Environ Qual; 2015 Nov; 44(6):1745-53. PubMed ID: 26641326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stream Corridor Soil Phosphorus Availability in a Forested-Agricultural Mixed Land Use Watershed.
    Perillo VL; Ross DS; Wemple BC; Balling C; Lemieux LE
    J Environ Qual; 2019 Jan; 48(1):185-192. PubMed ID: 30640355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streambanks: A net source of sediment and phosphorus to streams and rivers.
    Fox GA; Purvis RA; Penn CJ
    J Environ Manage; 2016 Oct; 181():602-614. PubMed ID: 27429360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Land use and landscape position influence soil organic phosphorus speciation in a mixed land use watershed.
    Perillo VL; Cade-Menun BJ; Ivancic M; Ross DS; Wemple BC
    J Environ Qual; 2021 Jul; 50(4):967-978. PubMed ID: 33960417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus reductions following riparian restoration in two agricultural watersheds in Vermont, USA.
    Meals DW; Hopkins RB
    Water Sci Technol; 2002; 45(9):51-60. PubMed ID: 12079124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total and Labile Phosphorus Concentrations as Influenced by Riparian Buffer Soil Properties.
    Young EO; Ross DS
    J Environ Qual; 2016 Jan; 45(1):294-304. PubMed ID: 26828185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riparian erosion vulnerability model based on environmental features.
    Botero-Acosta A; Chu ML; Guzman JA; Starks PJ; Moriasi DN
    J Environ Manage; 2017 Dec; 203(Pt 1):592-602. PubMed ID: 28318825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated assessment of land use impact, riparian vegetation and lithologic variation on streambank stability in a peri-urban watershed (Nigeria).
    Okeke CAU; Uno J; Academe S; Emenike PC; Abam TKS; Omole DO
    Sci Rep; 2022 Jun; 12(1):10989. PubMed ID: 35768622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water quality response to riparian restoration in an agricultural watershed in Vermont, USA.
    Meals DW
    Water Sci Technol; 2001; 43(5):175-82. PubMed ID: 11379130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model.
    Alexander RB; Smith RA; Schwarz GE
    Water Sci Technol; 2004; 49(3):1-10. PubMed ID: 15053093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying the Bank Erosion Hazard Index (BEHI) protocol for rapid assessment of streambank erosion in northeastern Ohio.
    Newton SE; Drenten DM
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25742064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tile Drainage as a Hydrologic Pathway for Phosphorus Export from an Agricultural Subwatershed.
    Michaud AR; Poirier SC; Whalen JK
    J Environ Qual; 2019 Jan; 48(1):64-72. PubMed ID: 30640348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Wetlands in Reducing Phosphorus Loading to Surface Water in Eight Watersheds in the Lake Champlain Basin.
    Weller CM; Watzin MC; Wang D
    Environ Manage; 1996 Sep; 20(5):731-9. PubMed ID: 8703110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riparian erosion from cattle traffic may contribute up to 50% of the modelled streambank sediment supply in a large Great Barrier Reef river basin.
    Packett R
    Mar Pollut Bull; 2020 Sep; 158():111388. PubMed ID: 32753175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion.
    Fox GA; Sheshukov A; Cruse R; Kolar RL; Guertault L; Gesch KR; Dutnell RC
    Environ Manage; 2016 May; 57(5):945-55. PubMed ID: 26885658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing.
    Ozsoy G; Aksoy E; Dirim MS; Tumsavas Z
    Environ Manage; 2012 Oct; 50(4):679-94. PubMed ID: 22810626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streambank erosion and phosphorus loading to surface waters: Knowns, unknowns, and implications for nutrient loss reduction research and policy.
    Margenot AJ; Zhou S; McDowell R; Hebert T; Fox G; Schilling K; Richmond S; Kovar JL; Wickramarathne N; Lemke D; Boomer K; Golovay S
    J Environ Qual; 2023; 52(6):1063-1079. PubMed ID: 37725393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling phosphorus in the Lake Allatoona watershed using SWAT: I. Developing phosphorus parameter values.
    Radcliffe DE; Lin Z; Risse LM; Romeis JJ; Jackson CR
    J Environ Qual; 2009; 38(1):111-20. PubMed ID: 19141800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus export by runoff from agricultural field plots with different crop cover in Lake Taihu watershed.
    Yan WJ; Huang MX; Zhang S; Tang YJ
    J Environ Sci (China); 2001 Oct; 13(4):502-7. PubMed ID: 11723941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.