These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26641511)

  • 1. TDHF Evaluation of the Dipole-Quadrupole Polarizability and Its Geometrical Derivatives.
    Quinet O; Liégeois V; Champagne B
    J Chem Theory Comput; 2005 May; 1(3):444-52. PubMed ID: 26641511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical derivative procedure for the calculation of vibrational Raman optical activity spectra.
    Liégeois V; Ruud K; Champagne B
    J Chem Phys; 2007 Nov; 127(20):204105. PubMed ID: 18052417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rototranslational sum rules for electromagnetic hypershielding at the nuclei and related atomic Cartesian derivatives of the optical rotatory power.
    Liégeois V; Champagne B; Lazzeretti P
    J Chem Phys; 2008 Jun; 128(24):244107. PubMed ID: 18601317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic dipole moments calculated using analytical molecular second-moment gradients.
    Solheim H; Ruud K; Astrand PO
    J Chem Phys; 2004 Jun; 120(22):10368-78. PubMed ID: 15268064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inclusion of the quadrupole moment when describing polarization. The effect of the dipole-quadrupole polarizability.
    Holt A; Karlström G
    J Comput Chem; 2008 Sep; 29(12):2033-8. PubMed ID: 18432620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory.
    Maschio L; Kirtman B; Rérat M; Orlando R; Dovesi R
    J Chem Phys; 2013 Oct; 139(16):164101. PubMed ID: 24181998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of origin-independent optical rotation tensor components in approximate time-dependent density functional theory.
    Krykunov M; Autschbach J
    J Chem Phys; 2006 Jul; 125(3):34102. PubMed ID: 16863339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Dependent Coupled Perturbed Hartree-Fock and Density-Functional-Theory Approach for Calculating Frequency-Dependent (Hyper)Polarizabilities with Nonorthogonal Localized Molecular Orbitals.
    Peng D; Li S; Peng L; Gu FL; Yang W
    J Chem Theory Comput; 2017 Sep; 13(9):4101-4112. PubMed ID: 28806078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance energy transfer mediated by a chiral molecule.
    Salam A
    J Chem Phys; 2021 Feb; 154(7):074111. PubMed ID: 33607878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical TDHF second derivatives of dynamic electronic polarizability with respect to nuclear coordinates. Application to the dynamic ZPVA correction.
    Quinet O; Champagne B; Kirtman B
    J Comput Chem; 2002 Nov; 23(15):1495-6. PubMed ID: 12370952
    [No Abstract]   [Full Text] [Related]  

  • 11. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: evaluation of first-order electrical properties.
    Datta D; Gauss J
    J Chem Phys; 2014 Sep; 141(10):104102. PubMed ID: 25217899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic calculations of vibrational hyperpolarizabilities in the atomic orbital basis.
    Thorvaldsen AJ; Ruud K; Jaszuński M
    J Phys Chem A; 2008 Nov; 112(46):11942-50. PubMed ID: 18947217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method.
    Maschio L; Kirtman B; Orlando R; Rèrat M
    J Chem Phys; 2012 Nov; 137(20):204113. PubMed ID: 23205987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.
    Yoshizawa T; Zou W; Cremer D
    J Chem Phys; 2016 Nov; 145(18):184104. PubMed ID: 27846684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical GIAO and hybrid-basis integral derivatives: application to geometry optimization of molecules in strong magnetic fields.
    Tellgren EI; Reine SS; Helgaker T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9492-9. PubMed ID: 22653039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of molecules in strong oscillating electric fields using time-dependent Hartree-Fock theory.
    Eshuis H; Balint-Kurti GG; Manby FR
    J Chem Phys; 2008 Mar; 128(11):114113. PubMed ID: 18361560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approximations for calculating dispersion coefficients.
    Cybulski SM; Haley TP
    J Chem Phys; 2004 Oct; 121(16):7711-6. PubMed ID: 15485231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A time-dependent Hartree-Fock approach for studying the electronic optical response of molecules in intense fields.
    Li X; Smith SM; Markevitch AN; Romanov DA; Levis RJ; Schlegel HB
    Phys Chem Chem Phys; 2005 Jan; 7(2):233-9. PubMed ID: 19785143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field effects on the shielding constants of noble gases: a four-component relativistic Hartree-Fock study.
    Pecul M; Saue T; Ruud K; Rizzo A
    J Chem Phys; 2004 Aug; 121(7):3051-7. PubMed ID: 15291614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions.
    Norman P; Ruud K; Helgaker T
    J Chem Phys; 2004 Mar; 120(11):5027-35. PubMed ID: 15267368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.