These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Suppression of the Leidenfrost effect via low frequency vibrations. Ng BT; Hung YM; Tan MK Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924 [TBL] [Abstract][Full Text] [Related]
4. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets. Ok JT; Choi J; Brown E; Park S Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527 [TBL] [Abstract][Full Text] [Related]
5. High jump of impinged droplets before Leidenfrost state. Qiu L; Dubey S; Choo FH; Duan F Phys Rev E; 2019 Mar; 99(3-1):033106. PubMed ID: 30999492 [TBL] [Abstract][Full Text] [Related]
6. Acoustic detection of electrostatic suppression of the Leidenfrost state. Shahriari A; Wilson PS; Bahadur V Phys Rev E; 2018 Jul; 98(1-1):013103. PubMed ID: 30110754 [TBL] [Abstract][Full Text] [Related]
7. Delayed Leidenfrost Effect of a Cutting Droplet on a Microgrooved Tool Surface. Guo Y; Liu X; Ji J; Wang Z; Hu X; Zhu Y; Zhang T; Tao T; Liu K; Jiao Y Langmuir; 2023 Jul; 39(28):9648-9659. PubMed ID: 37390023 [TBL] [Abstract][Full Text] [Related]
8. Lotus-like effect for metal filings recovery and particle removal on heated metal surfaces using Leidenfrost water droplets. Tan CL; Sapiha K; Leong YF; Choi S; Anariba F; Thio BJ Soft Matter; 2015 Jul; 11(27):5400-7. PubMed ID: 26053932 [TBL] [Abstract][Full Text] [Related]
9. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Li Q; Kang QJ; Francois MM; Hu AJ Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921 [TBL] [Abstract][Full Text] [Related]
10. Final fate of a Leidenfrost droplet: Explosion or takeoff. Lyu S; Mathai V; Wang Y; Sobac B; Colinet P; Lohse D; Sun C Sci Adv; 2019 May; 5(5):eaav8081. PubMed ID: 31058224 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamics of Leidenfrost droplets in one-component fluids. Xu X; Qian T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043013. PubMed ID: 23679519 [TBL] [Abstract][Full Text] [Related]
12. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions. Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652 [TBL] [Abstract][Full Text] [Related]
13. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature. Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835 [TBL] [Abstract][Full Text] [Related]
15. Self-propelled Leidenfrost droplets on a heated glycerol pool. Matsumoto R; Hasegawa K Sci Rep; 2021 Feb; 11(1):3954. PubMed ID: 33597605 [TBL] [Abstract][Full Text] [Related]
16. The thermo-wetting instability driving Leidenfrost film collapse. Zhao TY; Patankar NA Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13321-13328. PubMed ID: 32461357 [TBL] [Abstract][Full Text] [Related]
17. The nanoscale Leidenfrost effect. Rodrigues J; Desai S Nanoscale; 2019 Jul; 11(25):12139-12151. PubMed ID: 31192326 [TBL] [Abstract][Full Text] [Related]
18. Inhibiting the Leidenfrost Effect by Superhydrophilic Nickel Foams with Ultrafast Droplet Permeation. Du J; Li Y; Wang X; Min Q ACS Appl Mater Interfaces; 2023 Aug; 15(34):41121-41129. PubMed ID: 37584594 [TBL] [Abstract][Full Text] [Related]
19. Low Friction Droplet Transportation on a Substrate with a Selective Leidenfrost Effect. Dodd LE; Wood D; Geraldi NR; Wells GG; McHale G; Xu BB; Stuart-Cole S; Martin J; Newton MI ACS Appl Mater Interfaces; 2016 Aug; 8(34):22658-63. PubMed ID: 27482833 [TBL] [Abstract][Full Text] [Related]
20. Leidenfrost point reduction on micropatterned metallic surfaces. del Cerro DA; Marín AG; Römer GR; Pathiraj B; Lohse D; Huis in 't Veld AJ Langmuir; 2012 Oct; 28(42):15106-10. PubMed ID: 23020737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]