These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26641668)

  • 41. Understanding the influence of codon translation rates on cotranslational protein folding.
    O'Brien EP; Ciryam P; Vendruscolo M; Dobson CM
    Acc Chem Res; 2014 May; 47(5):1536-44. PubMed ID: 24784899
    [TBL] [Abstract][Full Text] [Related]  

  • 42. lacZ translation initiation mutations.
    Munson LM; Stormo GD; Niece RL; Reznikoff WS
    J Mol Biol; 1984 Aug; 177(4):663-83. PubMed ID: 6434747
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ribosome uses two active mechanisms to unwind messenger RNA during translation.
    Qu X; Wen JD; Lancaster L; Noller HF; Bustamante C; Tinoco I
    Nature; 2011 Jul; 475(7354):118-21. PubMed ID: 21734708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strong negative correlation between codon usage bias and protein structural disorder impedes protein expression after codon optimization.
    Liu K; Ouyang Y; Lin R; Ge C; Zhou M
    J Biotechnol; 2022 Jan; 343():15-24. PubMed ID: 34763006
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CHARMING: Harmonizing synonymous codon usage to replicate a desired codon usage pattern.
    Wright G; Rodriguez A; Li J; Milenkovic T; Emrich SJ; Clark PL
    Protein Sci; 2022 Jan; 31(1):221-231. PubMed ID: 34738275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Codon usage bias in 5' terminal coding sequences reveals distinct enrichment of gene functions.
    Liu H; Rahman SU; Mao Y; Xu X; Tao S
    Genomics; 2017 Oct; 109(5-6):506-513. PubMed ID: 28778539
    [TBL] [Abstract][Full Text] [Related]  

  • 47. "Lost in translation: Seeing the forest by focusing on the trees".
    Hughes KT; Chevance FFV
    RNA Biol; 2018 Feb; 15(2):182-185. PubMed ID: 29130371
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Role of the code redundancy in determining cotranslational protein folding].
    Krasheninnikov IA; Komar AA; Adzhubeĭ IA
    Biokhimiia; 1989 Feb; 54(2):187-200. PubMed ID: 2742922
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of the codon following the initiation codon on the expression of the lacZ gene in Saccharomyces cerevisiae.
    Looman AC; Laude M; Stahl U
    Yeast; 1991 Feb; 7(2):157-65. PubMed ID: 1905858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein secondary structural types are differentially coded on messenger RNA.
    Thanaraj TA; Argos P
    Protein Sci; 1996 Oct; 5(10):1973-83. PubMed ID: 8897597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-resolution modeling of the selection on local mRNA folding strength in coding sequences across the tree of life.
    Peeri M; Tuller T
    Genome Biol; 2020 Mar; 21(1):63. PubMed ID: 32151272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ferritin translation by interleukin-1and interleukin-6: the role of sequences upstream of the start codons of the heavy and light subunit genes.
    Rogers JT
    Blood; 1996 Mar; 87(6):2525-37. PubMed ID: 8630420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Codon Usage Optimization in the Prokaryotic Tree of Life: How Synonymous Codons Are Differentially Selected in Sequence Domains with Different Expression Levels and Degrees of Conservation.
    López JL; Lozano MJ; Fabre ML; Lagares A
    mBio; 2020 Jul; 11(4):. PubMed ID: 32694138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physical Origins of Codon Positions That Strongly Influence Cotranslational Folding: A Framework for Controlling Nascent-Protein Folding.
    Sharma AK; Bukau B; O'Brien EP
    J Am Chem Soc; 2016 Feb; 138(4):1180-95. PubMed ID: 26716464
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Decoding mechanisms by which silent codon changes influence protein biogenesis and function.
    Bali V; Bebok Z
    Int J Biochem Cell Biol; 2015 Jul; 64():58-74. PubMed ID: 25817479
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Does mRNA structure contain genetic information for regulating co-translational protein folding?
    Yang JR
    Zool Res; 2017 Jan; 38(1):36-43. PubMed ID: 28271668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons.
    Yang Q; Yu CH; Zhao F; Dang Y; Wu C; Xie P; Sachs MS; Liu Y
    Nucleic Acids Res; 2019 Sep; 47(17):9243-9258. PubMed ID: 31410471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A periodic pattern of mRNA secondary structure created by the genetic code.
    Shabalina SA; Ogurtsov AY; Spiridonov NA
    Nucleic Acids Res; 2006; 34(8):2428-37. PubMed ID: 16682450
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An unstructured mRNA region and a 5' hairpin represent important elements of the E. coli translation initiation signal determined by using the bacteriophage T7 gene 1 translation start site.
    Helke A; Geisen RM; Vollmer M; Sprengart ML; Fuchs E
    Nucleic Acids Res; 1993 Dec; 21(24):5705-11. PubMed ID: 8284218
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Protein Structure on Evolution of Cotranslational Folding.
    Zhao V; Jacobs WM; Shakhnovich EI
    Biophys J; 2020 Sep; 119(6):1123-1134. PubMed ID: 32857962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.