These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 26642345)
1. Biotrophic interaction of Sporisorium scitamineum on a new host--Saccharum spontaneum. Jose RC; Louis B; Goyari S; Waikhom SD; Handique PJ; Talukdar NC Micron; 2016 Feb; 81():8-15. PubMed ID: 26642345 [TBL] [Abstract][Full Text] [Related]
2. Investigation on the biotrophic interaction of Ustilago esculenta on Zizania latifolia found in the Indo-Burma biodiversity hotspot. Jose RC; Goyari S; Louis B; Waikhom SD; Handique PJ; Talukdar NC Microb Pathog; 2016 Sep; 98():6-15. PubMed ID: 27334294 [TBL] [Abstract][Full Text] [Related]
3. Sugarcane smut: shedding light on the development of the whip-shaped sorus. Marques JPR; Appezzato-da-Glória B; Piepenbring M; Massola NS; Monteiro-Vitorello CB; Vieira MLC Ann Bot; 2017 Mar; 119(5):815-827. PubMed ID: 27568298 [TBL] [Abstract][Full Text] [Related]
4. The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity. Yan M; Zhu G; Lin S; Xian X; Chang C; Xi P; Shen W; Huang W; Cai E; Jiang Z; Deng YZ; Zhang LH Fungal Genet Biol; 2016 Jan; 86():1-8. PubMed ID: 26563415 [TBL] [Abstract][Full Text] [Related]
5. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. Que Y; Xu L; Wu Q; Liu Y; Ling H; Liu Y; Zhang Y; Guo J; Su Y; Chen J; Wang S; Zhang C BMC Genomics; 2014 Nov; 15(1):996. PubMed ID: 25406499 [TBL] [Abstract][Full Text] [Related]
6. Polyamines levels increase in smut teliospores after contact with sugarcane glycoproteins as a plant defensive mechanism. Sánchez-Elordi E; de Los Ríos LM; Vicente C; Legaz ME J Plant Res; 2019 May; 132(3):405-417. PubMed ID: 30864048 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional analysis identifies major pathways as response components to Sporisorium scitamineum stress in sugarcane. Huang N; Ling H; Su Y; Liu F; Xu L; Su W; Wu Q; Guo J; Gao S; Que Y Gene; 2018 Dec; 678():207-218. PubMed ID: 30099025 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy. McNeil MD; Bhuiyan SA; Berkman PJ; Croft BJ; Aitken KS PLoS One; 2018; 13(5):e0197840. PubMed ID: 29795614 [TBL] [Abstract][Full Text] [Related]
9. Aminotransferase SsAro8 Regulates Tryptophan Metabolism Essential for Filamentous Growth of Sugarcane Smut Fungus Cui G; Huang C; Bi X; Wang Y; Yin K; Zhu L; Jiang Z; Chen B; Deng YZ Microbiol Spectr; 2022 Aug; 10(4):e0057022. PubMed ID: 35862944 [TBL] [Abstract][Full Text] [Related]
10. Identification and evaluation of PCR reference genes for host and pathogen in sugarcane-Sporisorium scitamineum interaction system. Huang N; Ling H; Liu F; Su Y; Su W; Mao H; Zhang X; Wang L; Chen R; Que Y BMC Genomics; 2018 Jun; 19(1):479. PubMed ID: 29914370 [TBL] [Abstract][Full Text] [Related]
11. Cellular and proteomic events associated with the localized formation of smut-gall during Zizania latifolia-Ustilago esculenta interaction. Jose RC; Bengyella L; Handique PJ; Talukdar NC Microb Pathog; 2019 Jan; 126():79-84. PubMed ID: 30367966 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of a compatible interaction between sugarcane and Sporisorium scitamineum. Barnabas L; Ashwin NM; Kaverinathan K; Trentin AR; Pivato M; Sundar AR; Malathi P; Viswanathan R; Rosana OB; Neethukrishna K; Carletti P; Arrigoni G; Masi A; Agrawal GK; Rakwal R Proteomics; 2016 Apr; 16(7):1111-22. PubMed ID: 26857420 [TBL] [Abstract][Full Text] [Related]
14. Protoplast-mediated transformation in Sporisorium scitamineum facilitates visualization of in planta developmental stages in sugarcane. Agisha VN; Ashwin NMR; Vinodhini RT; Nalayeni K; Ramesh Sundar A; Malathi P; Viswanathan R Mol Biol Rep; 2021 Dec; 48(12):7921-7932. PubMed ID: 34655406 [TBL] [Abstract][Full Text] [Related]
15. Identification of smut-responsive genes in sugarcane using cDNA-SRAP. Huang N; Zhang YY; Xiao XH; Huang L; Wu QB; Que YX; Xu LP Genet Mol Res; 2015 Jun; 14(2):6808-18. PubMed ID: 26125888 [TBL] [Abstract][Full Text] [Related]
16. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores. Sánchez-Elordi E; Baluška F; Echevarría C; Vicente C; Legaz ME J Plant Physiol; 2016 Aug; 200():111-23. PubMed ID: 27372179 [TBL] [Abstract][Full Text] [Related]
17. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress. Su Y; Xiao X; Ling H; Huang N; Liu F; Su W; Zhang Y; Xu L; Muhammad K; Que Y BMC Genomics; 2019 Jan; 20(1):57. PubMed ID: 30658590 [TBL] [Abstract][Full Text] [Related]
19. Exploring Potential Surrogate Systems for Studying the Early Steps of the Marrafon-Silva M; Maia T; Calderan-Rodrigues MJ; Strabello M; Oliveira L; Creste S; Melotto M; Monteiro-Vitorello CB Phytopathology; 2024 Jun; 114(6):1295-1304. PubMed ID: 38148162 [TBL] [Abstract][Full Text] [Related]
20. Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection. Su Y; Zhang Y; Huang N; Liu F; Su W; Xu L; Ahmad W; Wu Q; Guo J; Que Y BMC Genomics; 2017 Apr; 18(1):325. PubMed ID: 28438123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]