These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 26642462)

  • 1. Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.
    Lian C; Xu X; Chen H; He H
    IEEE Trans Cybern; 2016 Nov; 46(11):2484-2496. PubMed ID: 26642462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning-Based Predictive Control for Discrete-Time Nonlinear Systems With Stochastic Disturbances.
    Xu X; Chen H; Lian C; Li D
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6202-6213. PubMed ID: 29993751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-learning sliding mode control based on adaptive dynamic programming for nonholonomic mobile robots.
    Ma Q; Zhang X; Xu X; Yang Y; Wu EQ
    ISA Trans; 2023 Nov; 142():136-147. PubMed ID: 37599205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observer-based finite-time control for trajectory tracking of wheeled mobile robots with kinematic disturbances.
    Miranda-Colorado R
    ISA Trans; 2024 May; 148():64-77. PubMed ID: 38580577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances.
    Lu Q; Chen J; Wang Q; Zhang D; Sun M; Su CY
    ISA Trans; 2022 Oct; 129(Pt A):273-286. PubMed ID: 35039151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual closed-loop sliding mode control for a decoupled three-link wheeled mobile manipulator.
    Seo IS; Han SI
    ISA Trans; 2018 Sep; 80():322-335. PubMed ID: 30075853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Nonlinear Model Predictive Control Based on Adaptive Dynamic Programming.
    Dong L; Yan J; Yuan X; He H; Sun C
    IEEE Trans Cybern; 2019 Dec; 49(12):4206-4218. PubMed ID: 30130246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sliding mode observer-based model predictive tracking control for Mecanum-wheeled mobile robot.
    Wang D; Gao Y; Wei W; Yu Q; Wei Y; Li W; Fan Z
    ISA Trans; 2024 Aug; 151():51-61. PubMed ID: 38945763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectory tracking nonlinear H
    Rodríguez-Arellano JA; Miranda-Colorado R; Aguilar LT; Negrete-Villanueva MA
    ISA Trans; 2023 Nov; 142():372-385. PubMed ID: 37550120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming.
    Fang H; Zhu Y; Dian S; Xiang G; Guo R; Li S
    ISA Trans; 2022 Sep; 128(Pt A):123-132. PubMed ID: 34756757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. USV Trajectory Tracking Control Based on Receding Horizon Reinforcement Learning.
    Wen Y; Chen Y; Guo X
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network-based optimal adaptive output feedback control of a helicopter UAV.
    Nodland D; Zargarzadeh H; Jagannathan S
    IEEE Trans Neural Netw Learn Syst; 2013 Jul; 24(7):1061-73. PubMed ID: 24808521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Heuristic Programming for Optimal Control of Continuous-Time Nonlinear Systems Using Single Echo State Network.
    Liu C; Zhang H; Luo Y; Su H
    IEEE Trans Cybern; 2022 Mar; 52(3):1701-1712. PubMed ID: 32396118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.
    Yoo SJ; Park JB; Choi YH
    IEEE Trans Neural Netw; 2008 Oct; 19(10):1712-26. PubMed ID: 18842476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receding horizon online optimization for torque control of gasoline engines.
    Kang M; Shen T
    ISA Trans; 2016 Nov; 65():371-383. PubMed ID: 27520854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm.
    Zhang H; Wei Q; Luo Y
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):937-42. PubMed ID: 18632381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method.
    Zhang H; Cui L; Zhang X; Luo Y
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2226-36. PubMed ID: 21997259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-Based Reinforcement Learning for Infinite-Horizon Approximate Optimal Tracking.
    Kamalapurkar R; Andrews L; Walters P; Dixon WE
    IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):753-758. PubMed ID: 26863674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Neuro-Optimal Control of Underactuated Snake Robots With Experience Replay.
    Cao Z; Xiao Q; Huang R; Zhou M
    IEEE Trans Neural Netw Learn Syst; 2018 Jan; 29(1):208-217. PubMed ID: 29300697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation Control and Tracking of Mobile Robots using Distributed Estimators and A Biologically Inspired Approach.
    Moorthy S; Joo YH
    J Electr Eng Technol; 2023; 18(3):2231-2244. PubMed ID: 37125221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.