These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 26642462)

  • 21. Finite-Horizon Approximate Optimal Guaranteed Cost Control of Uncertain Nonlinear Systems With Application to Mars Entry Guidance.
    Wu HN; Li MM; Guo L
    IEEE Trans Neural Netw Learn Syst; 2015 Jul; 26(7):1456-67. PubMed ID: 25163073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural network-based finite horizon stochastic optimal control design for nonlinear networked control systems.
    Xu H; Jagannathan S
    IEEE Trans Neural Netw Learn Syst; 2015 Mar; 26(3):472-85. PubMed ID: 25720004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic path planning and trajectory tracking using MPC for satellite with collision avoidance.
    Hu Q; Xie J; Wang C
    ISA Trans; 2019 Jan; 84():128-141. PubMed ID: 30316573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of a nonholonomic mobile robot using neural networks.
    Fierro R; Lewis FL
    IEEE Trans Neural Netw; 1998; 9(4):589-600. PubMed ID: 18252483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach.
    Xu D; Zhao D; Yi J; Tan X
    IEEE Trans Syst Man Cybern B Cybern; 2009 Jun; 39(3):788-99. PubMed ID: 19336336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Universal Path-Following of Wheeled Mobile Robots: A Closed-Form Bounded Velocity Solution.
    Oftadeh R; Ghabcheloo R; Mattila J
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal Tracking Control of Unknown Discrete-Time Linear Systems Using Input-Output Measured Data.
    Kiumarsi B; Lewis FL; Naghibi-Sistani MB; Karimpour A
    IEEE Trans Cybern; 2015 Dec; 45(12):2770-9. PubMed ID: 25576591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual Tracking and Depth Estimation of Mobile Robots Without Desired Velocity Information.
    Zhang K; Chen J; Li Y; Zhang X
    IEEE Trans Cybern; 2020 Jan; 50(1):361-373. PubMed ID: 30281506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models.
    Yang C; Li Z; Li J
    IEEE Trans Cybern; 2013 Feb; 43(1):24-36. PubMed ID: 22695357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive backstepping sliding mode control of flexible ball screw drives with time-varying parametric uncertainties and disturbances.
    Dong L; Tang WC
    ISA Trans; 2014 Jan; 53(1):110-6. PubMed ID: 24053935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach.
    Chaoxu Mu ; Ding Wang ; Haibo He
    IEEE Trans Cybern; 2018 Oct; 48(10):2948-2961. PubMed ID: 29028219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trajectory tracking for two-degree of freedom helicopter system using a controller-disturbance observer integrated design.
    Zarei A; Poutari MS; Barakati SM
    ISA Trans; 2018 Mar; 74():99-110. PubMed ID: 29395128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flocking of multiple mobile robots based on backstepping.
    Dong W
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):414-24. PubMed ID: 20709643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-step receding horizon H(∞) control for networked control systems with random delay and packet disordering.
    Liu A; Yu L; Zhang WA
    ISA Trans; 2011 Jan; 50(1):44-52. PubMed ID: 21036353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Information space receding horizon control.
    Sunberg Z; Chakravorty S; Scott Erwin R
    IEEE Trans Cybern; 2013 Dec; 43(6):2255-60. PubMed ID: 23757584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural-Dynamic Optimization-Based Model Predictive Control for Tracking and Formation of Nonholonomic Multirobot Systems.
    Li Z; Yuan W; Chen Y; Ke F; Chu X; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6113-6122. PubMed ID: 29993700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Dynamic Three-Level Tracking Controller for Mobile Robots Considering Actuators and Power Stage Subsystems: Experimental Assessment.
    García-Sánchez JR; Tavera-Mosqueda S; Silva-Ortigoza R; Hernández-Guzmán VM; Marciano-Melchor M; Rubio JJ; Ponce-Silva M; Hernández-Bolaños M; Martínez-Martínez J
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Receding horizon H
    Zhong J; Liang S; Xiong Q
    ISA Trans; 2018 Feb; 73():249-256. PubMed ID: 29331433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust guaranteed cost tracking control of quadrotor UAV with uncertainties.
    Xu Z; Nian X; Wang H; Chen Y
    ISA Trans; 2017 Jul; 69():157-165. PubMed ID: 28410747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.