BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26642804)

  • 1. High Sensitivity Bacillus thuringiensis Cry1Ac Protein Detections Using Fluorescein Diacetate Nanoparticles.
    Liu C; Zhou Z; Zou L; Cao YC; Liu J; Lin Y
    J Fluoresc; 2016 Mar; 26(2):451-7. PubMed ID: 26642804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@Au nanoparticles.
    Li J; Xu Q; Wei X; Hao Z
    J Agric Food Chem; 2013 Feb; 61(7):1435-40. PubMed ID: 23317307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an immunochromatographic assay for the specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin.
    Dong S; Liu Y; Zhang X; Xu C; Liu X; Zhang C
    Anal Biochem; 2019 Feb; 567():1-7. PubMed ID: 30130490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model.
    Dong S; Zhang X; Liu Y; Zhang C; Xie Y; Zhong J; Xu C; Liu X
    Anal Bioanal Chem; 2017 Mar; 409(8):1985-1994. PubMed ID: 28078413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly specific enzyme-linked immunosorbent assay for the detection of Cry1Ac insecticidal crystal protein in transgenic WideStrike cotton.
    Shan G; Embrey SK; Schafer BW
    J Agric Food Chem; 2007 Jul; 55(15):5974-9. PubMed ID: 17595107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of Cry1Ac protein within transgenic Bacillus thuringiensis rice tissues under field and laboratory conditions.
    Li Y; Wu K; Zhang Y; Yuan G
    Environ Entomol; 2007 Oct; 36(5):1275-82. PubMed ID: 18284753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of an Immunized Rabbit Phage Display Library for Selecting High Activity against Bacillus thuringiensis Cry1F Toxin Single-Chain Antibodies.
    Xu C; Zhang C; Zhong J; Hu H; Luo S; Liu X; Zhang X; Liu Y; Liu X
    J Agric Food Chem; 2017 Jul; 65(29):6016-6022. PubMed ID: 28621534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An immuno-PCR method for detecting Bacillus thuringiensis Cry1Ac toxin.
    Allen RC; Rogelj S; Cordova SE; Kieft TL
    J Immunol Methods; 2006 Jan; 308(1-2):109-15. PubMed ID: 16337224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive immunosensing platform for one-step detection of genetically modified crops.
    Gao H; Wen L; Hua W; Tian J; Lin Y
    Sci Rep; 2019 Nov; 9(1):16117. PubMed ID: 31695115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naïve mouse phage displayed library.
    Zhang X; Xu C; Zhang C; Liu Y; Xie Y; Liu X
    Toxicon; 2014 Apr; 81():13-22. PubMed ID: 24472345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Fluorescent Nanoparticle for Sensitive Detection of Cry1Ab Protein In Vitro and In Vivo.
    Xu X; Chen H; Cao Y; Lin Y; Liu J
    J Fluoresc; 2018 Jul; 28(4):863-869. PubMed ID: 29992458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Selective and Sensitive Electrochemical Immunoassay of Cry1C Using Nanobody and π-π Stacked Graphene Oxide/Thionine Assembly.
    Zhou Q; Li G; Zhang Y; Zhu M; Wan Y; Shen Y
    Anal Chem; 2016 Oct; 88(19):9830-9836. PubMed ID: 27617345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution pattern of DNA and protoxin in Bacillus thuringiensis as revealed by laser confocal microscopy analysis.
    Hu Q; Wang J; Fu Z; Mo X; Ding X; Xia L; Zhang Y; Sun Y
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5605-12. PubMed ID: 25715783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly sensitive fluorescent immunoassay based on avidin-labeled nanocrystals.
    Sin KK; Chan CP; Pang TH; Seydack M; Renneberg R
    Anal Bioanal Chem; 2006 Feb; 384(3):638-44. PubMed ID: 16395557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay.
    Zhu X; Chen L; Shen P; Jia J; Zhang D; Yang L
    J Agric Food Chem; 2011 Mar; 59(6):2184-9. PubMed ID: 21329353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time immuno-PCR: an approach for detection of trace amounts of transgenic proteins.
    Kumar R; Sinha RP
    J AOAC Int; 2014; 97(6):1634-7. PubMed ID: 25632439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of monoclonal antibody and scFv immuno-based assay for Cry2Aa toxin in spiked grain samples.
    Shen C; Hao J; Li Y; Jin J; Meng M; Zhang X; Lin M; Xu C; Zhu Q; Xie Y; Lin J; Liu Y; Liu X
    Anal Biochem; 2023 Sep; 677():115270. PubMed ID: 37531991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding properties of a monoclonal antibody against the Cry1Ab from Bacillus Thuringensis for the development of a capillary electrophoresis competitive immunoassay.
    Giovannoli C; Anfossi L; Baggiani C; Giraudi G
    Anal Bioanal Chem; 2008 Oct; 392(3):385-93. PubMed ID: 18185920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.
    Fantozzi A; Ermolli M; Marini M; Scotti D; Balla B; Querci M; Langrell SR; Van den Eede G
    J Agric Food Chem; 2007 Feb; 55(4):1071-6. PubMed ID: 17300145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory and field validation of a Cry1Ab protein quantitation method for water.
    Strain KE; Whiting SA; Lydy MJ
    Talanta; 2014 Oct; 128():109-16. PubMed ID: 25059137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.