These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26642835)

  • 1. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.
    Hébert S; Berthebaud D; Daou R; Bréard Y; Pelloquin D; Guilmeau E; Gascoin F; Lebedev O; Maignan A
    J Phys Condens Matter; 2016 Jan; 28(1):013001. PubMed ID: 26642835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides.
    Jood P; Ohta M
    Materials (Basel); 2015 Mar; 8(3):1124-1149. PubMed ID: 28787992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.
    Rhyee JS; Kim JH
    Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting some chalcogenides for thermoelectricity.
    Maignan A; Guilmeau E; Gascoin F; Bréard Y; Hardy V
    Sci Technol Adv Mater; 2012 Oct; 13(5):053003. PubMed ID: 27877513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722.
    Kieslich G; Veremchuk I; Antonyshyn I; Zeier WG; Birkel CS; Weldert K; Heinrich CP; Visnow E; Panthöfer M; Burkhardt U; Grin Y; Tremel W
    Phys Chem Chem Phys; 2013 Oct; 15(37):15399-403. PubMed ID: 23936907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BaCu2Se2 based compounds as promising thermoelectric materials.
    Li J; Zhao LD; Sui J; Berardan D; Cai W; Dragoe N
    Dalton Trans; 2015 Feb; 44(5):2285-93. PubMed ID: 25531095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures.
    Girard SN; He J; Zhou X; Shoemaker D; Jaworski CM; Uher C; Dravid VP; Heremans JP; Kanatzidis MG
    J Am Chem Soc; 2011 Oct; 133(41):16588-97. PubMed ID: 21902270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the effects of substitution, intercalation, non-stoichiometry and block layer concept in TiS2 based thermoelectrics.
    Guilmeau E; Maignan A; Wan C; Koumoto K
    Phys Chem Chem Phys; 2015 Oct; 17(38):24541-55. PubMed ID: 26343362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some Thermoelectric Phenomena in Copper Chalcogenides Replaced by Lithium and Sodium Alkaline Metals.
    Kubenova MM; Kuterbekov KA; Balapanov MK; Ishembetov RK; Kabyshev AM; Bekmyrza KZ
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the iron substitution on the thermoelectric properties of Co
    Salas UA; Fourati I; Juraszek J; Richomme F; Pelloquin D; Maignan A; Hébert S
    Philos Trans A Math Phys Eng Sci; 2019 Aug; 377(2152):20180337. PubMed ID: 31280719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric properties of the quaternary chalcogenides BaCu5.9STe6 and BaCu5.9SeTe6.
    Oudah M; Kleinke KM; Kleinke H
    Inorg Chem; 2015 Feb; 54(3):845-9. PubMed ID: 25299429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ternary selenides A
    Lee C; Kim S; Son WJ; Shim JH; Whangbo MH
    RSC Adv; 2020 Apr; 10(24):14415-14421. PubMed ID: 35498457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials.
    Banik A; Roychowdhury S; Biswas K
    Chem Commun (Camb); 2018 Jun; 54(50):6573-6590. PubMed ID: 29749410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationally Designing High-Performance Bulk Thermoelectric Materials.
    Tan G; Zhao LD; Kanatzidis MG
    Chem Rev; 2016 Oct; 116(19):12123-12149. PubMed ID: 27580481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric effects in graphene nanostructures.
    Dollfus P; Hung Nguyen V; Saint-Martin J
    J Phys Condens Matter; 2015 Apr; 27(13):133204. PubMed ID: 25779989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric properties of the Ca(5)Al(2-x)In(x)Sb(6) solid solution.
    Zevalkink A; Swallow J; Ohno S; Aydemir U; Bux S; Snyder GJ
    Dalton Trans; 2014 Nov; 43(42):15872-8. PubMed ID: 25226576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Thermoelectric Properties of Misfit Layered Sulfides (MS)
    Sotnikov AV; Jood P; Ohta M
    ACS Omega; 2020 Jun; 5(22):13006-13013. PubMed ID: 32548485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-).
    Ohta H; Sugiura K; Koumoto K
    Inorg Chem; 2008 Oct; 47(19):8429-36. PubMed ID: 18821809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Apr; 85(4):045107. PubMed ID: 24784659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.