These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 26642926)
1. Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. de la Llave E; Borgel V; Park KJ; Hwang JY; Sun YK; Hartmann P; Chesneau FF; Aurbach D ACS Appl Mater Interfaces; 2016 Jan; 8(3):1867-75. PubMed ID: 26642926 [TBL] [Abstract][Full Text] [Related]
2. Improved Electrochemical Performance of Fe-Substituted NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries. Yuan DD; Wang YX; Cao YL; Ai XP; Yang HX ACS Appl Mater Interfaces; 2015 Apr; 7(16):8585-91. PubMed ID: 25849200 [TBL] [Abstract][Full Text] [Related]
3. Effect of Controlled-Atmosphere Storage and Ethanol Rinsing on NaNi Zheng L; Li L; Shunmugasundaram R; Obrovac MN ACS Appl Mater Interfaces; 2018 Nov; 10(44):38246-38254. PubMed ID: 30360107 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Electrochemistry of O3-type NaFeO Thorne JS; Zheng L; Lee CLD; Dunlap RA; Obrovac MN ACS Appl Mater Interfaces; 2018 Jul; 10(26):22013-22022. PubMed ID: 29897233 [TBL] [Abstract][Full Text] [Related]
5. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries. Etacheri V; Hong CN; Pol VG Environ Sci Technol; 2015 Sep; 49(18):11191-8. PubMed ID: 26098219 [TBL] [Abstract][Full Text] [Related]
6. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298 [TBL] [Abstract][Full Text] [Related]
7. Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms. Wahid M; Puthusseri D; Gawli Y; Sharma N; Ogale S ChemSusChem; 2018 Feb; 11(3):506-526. PubMed ID: 29098791 [TBL] [Abstract][Full Text] [Related]
8. Lithium-ion transport through a tailored disordered phase on the LiNi0.5 Mn1.5 O4 surface for high-power cathode materials. Jo MR; Kim YI; Kim Y; Chae JS; Roh KC; Yoon WS; Kang YM ChemSusChem; 2014 Aug; 7(8):2248-54. PubMed ID: 24924807 [TBL] [Abstract][Full Text] [Related]
10. A High-Voltage and High-Capacity Li1+x Ni0.5 Mn1.5 O4 Cathode Material: From Synthesis to Full Lithium-Ion Cells. Mancini M; Axmann P; Gabrielli G; Kinyanjui M; Kaiser U; Wohlfahrt-Mehrens M ChemSusChem; 2016 Jul; 9(14):1843-9. PubMed ID: 27273330 [TBL] [Abstract][Full Text] [Related]
11. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment. Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328 [TBL] [Abstract][Full Text] [Related]
12. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries. Sun C; Rajasekhara S; Dong Y; Goodenough JB ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744 [TBL] [Abstract][Full Text] [Related]
13. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Zhu Y; Xu Y; Liu Y; Luo C; Wang C Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of Full (Li-Ion)-O Hirshberg D; Sharon D; De La Llave E; Afri M; Frimer AA; Kwak WJ; Sun YK; Aurbach D ACS Appl Mater Interfaces; 2017 Feb; 9(5):4352-4361. PubMed ID: 27786463 [TBL] [Abstract][Full Text] [Related]
15. New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes. Chen L; Gu Q; Zhou X; Lee S; Xia Y; Liu Z Sci Rep; 2013; 3():1946. PubMed ID: 23736113 [TBL] [Abstract][Full Text] [Related]
16. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. Chang K; Chen W ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610 [TBL] [Abstract][Full Text] [Related]
17. Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance. Zhou Y; Lee J; Lee CW; Wu M; Yoon S ChemSusChem; 2012 Dec; 5(12):2376-82. PubMed ID: 23109490 [TBL] [Abstract][Full Text] [Related]
18. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes. Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718 [TBL] [Abstract][Full Text] [Related]
19. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries. Lou F; Zhou H; Tran TD; Melandsø Buan ME; Vullum-Bruer F; Rønning M; Walmsley JC; Chen D ChemSusChem; 2014 May; 7(5):1335-46. PubMed ID: 24578068 [TBL] [Abstract][Full Text] [Related]
20. Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries. Noh HJ; Ju JW; Sun YK ChemSusChem; 2014 Jan; 7(1):245-52. PubMed ID: 24127348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]