These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26643087)

  • 21. Differential leg function in a sprawled-posture quadrupedal trotter.
    Chen JJ; Peattie AM; Autumn K; Full RJ
    J Exp Biol; 2006 Jan; 209(Pt 2):249-59. PubMed ID: 16391347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hind limb proportions and kinematics: are small primates different from other small mammals?
    Schmidt M
    J Exp Biol; 2005 Sep; 208(Pt 17):3367-83. PubMed ID: 16109897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole-body 3D kinematics of bird take-off: key role of the legs to propel the trunk.
    Provini P; Abourachid A
    Naturwissenschaften; 2018 Jan; 105(1-2):12. PubMed ID: 29330588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
    Ruina A; Bertram JE; Srinivasan M
    J Theor Biol; 2005 Nov; 237(2):170-92. PubMed ID: 15961114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation.
    Massaad F; Levin O; Meyns P; Drijkoningen D; Swinnen SP; Duysens J
    Neuroscience; 2014 Jan; 258():34-46. PubMed ID: 24144625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constraints on muscle performance provide a novel explanation for the scaling of posture in terrestrial animals.
    Usherwood JR
    Biol Lett; 2013 Aug; 9(4):20130414. PubMed ID: 23825086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trunk and leg kinematics of grounded and aerial running in bipedal macaques.
    Blickhan R; Andrada E; Hirasaki E; Ogihara N
    J Exp Biol; 2021 Jan; 224(Pt 2):. PubMed ID: 33288531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The correlation between locomotor performance and hindlimb kinematics during burst locomotion in the Florida scrub lizard, Sceloporus woodi.
    McElroy EJ; Archambeau KL; McBrayer LD
    J Exp Biol; 2012 Feb; 215(Pt 3):442-53. PubMed ID: 22246253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.
    Gosnell WC; Butcher MT; Maie T; Blob RW
    J Exp Biol; 2011 Oct; 214(Pt 20):3455-66. PubMed ID: 21957109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Terrestrial locomotion in the black-billed magpie: kinematic analysis of walking, running and out-of-phase hopping.
    Verstappen M; Aerts P; Van Damme R
    J Exp Biol; 2000 Jul; 203(Pt 14):2159-70. PubMed ID: 10862728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ontogenetic changes in limb posture, kinematics, forces and joint moments in American alligators (Alligator mississippiensis).
    Iijima M; Munteanu VD; Elsey RM; Blob RW
    J Exp Biol; 2021 Dec; 224(23):. PubMed ID: 34746961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching.
    Badri-Spröwitz A; Aghamaleki Sarvestani A; Sitti M; Daley MA
    Sci Robot; 2022 Mar; 7(64):eabg4055. PubMed ID: 35294220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential leg and trunk operation during skipping without and with hurdles in bipedal Japanese macaque.
    Blickhan R; Andrada E; Hirasaki E; Ogihara N
    J Exp Zool A Ecol Integr Physiol; 2024 Jun; 341(5):525-543. PubMed ID: 38436123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the Agility of Running Birds: Sensorimotor and Mechanical Factors in Avian Bipedal Locomotion.
    Daley MA
    Integr Comp Biol; 2018 Nov; 58(5):884-893. PubMed ID: 29897448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of hip strength on lower-limb, pelvis, and trunk kinematics and coordination patterns during walking and hopping in healthy women.
    Smith JA; Popovich JM; Kulig K
    J Orthop Sports Phys Ther; 2014 Jul; 44(7):525-31. PubMed ID: 24816500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinematic adaptations to tripedal locomotion in dogs.
    Goldner B; Fuchs A; Nolte I; Schilling N
    Vet J; 2015 May; 204(2):192-200. PubMed ID: 25862392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Animals prefer leg stiffness values that may reduce the energetic cost of locomotion.
    Shen Z; Seipel J
    J Theor Biol; 2015 Jan; 364():433-8. PubMed ID: 25234232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.