These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26643089)

  • 1. Cold-hardening during long-term acclimation in a freeze-tolerant woolly bear caterpillar, Pyrrharctia isabella.
    Yi SX; Lee RE
    J Exp Biol; 2016 Jan; 219(Pt 1):17-25. PubMed ID: 26643089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triggering of cryoprotectant synthesis in the woolly bear caterpillar (Pyrrharctia isabella Lepidoptera: Arctiidae).
    Layne JR; Kuharsky DK
    J Exp Zool; 2000 Mar; 286(4):367-71. PubMed ID: 10684559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of freeze duration on postfreeze recovery by caterpillars of Pyrrharctia isabella (Lepidoptera: Arctiidae): when is survival enough to qualify as recovery?
    Layne JR; Peffer BJ
    J Exp Zool A Comp Exp Biol; 2006 Jul; 305(7):570-5. PubMed ID: 16703608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella.
    Marshall KE; Sinclair BJ
    J Exp Biol; 2011 Apr; 214(Pt 7):1205-12. PubMed ID: 21389206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane ion distribution during recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera: Arctiidae).
    Boardman L; Terblanche JS; Sinclair BJ
    J Insect Physiol; 2011 Aug; 57(8):1154-62. PubMed ID: 21575641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of freeze temperature on ice formation and long-term survival of the woolly bear caterpillar (Pyrrharctia isabella).
    Layne JR; Blakeley DL
    J Insect Physiol; 2002 Dec; 48(12):1133-1137. PubMed ID: 12770036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening.
    Levis NA; Yi SX; Lee RE
    J Exp Biol; 2012 Nov; 215(Pt 21):3768-73. PubMed ID: 22899523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between cold hardiness, and ice nucleating activity, glycerol and protein contents in the hemolymph of caterpillars, Aporia crataegi L.
    Li NG
    Cryo Letters; 2012; 33(2):135-43. PubMed ID: 22576117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae).
    Toxopeus J; McKinnon AH; Štětina T; Turnbull KF; Sinclair BJ
    J Insect Physiol; 2019; 113():9-16. PubMed ID: 30582905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold hardiness and postfreeze metabolism in caterpillars of Hypercompe scribonia (Arctiidae: Lepidoptera).
    Layne JR; Leszczynski CF
    Environ Entomol; 2008 Oct; 37(5):1069-73. PubMed ID: 19036183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.
    Park Y; Kim Y
    J Insect Physiol; 2014 Aug; 67():56-63. PubMed ID: 24973793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella).
    Rozsypal J; Koštál V; Zahradníčková H; Šimek P
    PLoS One; 2013; 8(4):e61745. PubMed ID: 23613923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.
    Olsson T; MacMillan HA; Nyberg N; Staerk D; Malmendal A; Overgaard J
    J Exp Biol; 2016 Aug; 219(Pt 16):2504-13. PubMed ID: 27307488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar.
    Sinclair BJ; Chown SL
    J Exp Biol; 2005 Mar; 208(Pt 5):869-79. PubMed ID: 15755885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold hardiness and influences of hibernaculum conditions on overwintering survival of American dog tick larvae.
    Rosendale AJ; Farrow DW; Dunlevy ME; Fieler AM; Benoit JB
    Ticks Tick Borne Dis; 2016 Oct; 7(6):1155-1161. PubMed ID: 27546608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in gut and Malpighian tubule transport during seasonal acclimatization and freezing in the gall fly Eurosta solidaginis.
    Yi SX; Lee RE
    J Exp Biol; 2005 May; 208(Pt 10):1895-904. PubMed ID: 15879070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.
    Kawarasaki Y; Teets NM; Denlinger DL; Lee RE
    J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Cold-Hardening of a Subtropical Species, Maruca vitrata (Lepidoptera: Crambidae), Accompanies Hypertrehalosemia by Upregulating Trehalose-6-Phosphate Synthase.
    Kim Y; Lee DW; Jung JK
    Environ Entomol; 2017 Dec; 46(6):1432-1438. PubMed ID: 29029081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing survival by isolated Malpighian tubules of the New Zealand alpine weta Hemideina maori.
    Neufeld DS; Leader LP
    J Exp Biol; 1998 Jan; 201(Pt 2):227-36. PubMed ID: 9405309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker.
    Izumi Y; Sonoda S; Tsumuki H
    J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.