BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26643279)

  • 1. Microwave-Assisted Synthesis of Highly-Crumpled, Few-Layered Graphene and Nitrogen-Doped Graphene for Use as High-Performance Electrodes in Capacitive Deionization.
    Amiri A; Ahmadi G; Shanbedi M; Savari M; Kazi SN; Chew BT
    Sci Rep; 2015 Dec; 5():17503. PubMed ID: 26643279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance.
    Xu X; Sun Z; Chua DH; Pan L
    Sci Rep; 2015 Jun; 5():11225. PubMed ID: 26063676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of porous graphene electrodes via CO
    Zhang Y; Chen L; Mao S; Sun Z; Song Y; Zhao R
    J Colloid Interface Sci; 2019 Feb; 536():252-260. PubMed ID: 30368097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacitive deionization of a RO brackish water by AC/graphene composite electrodes.
    Chong LG; Chen PA; Huang JY; Huang HL; Wang HP
    Chemosphere; 2018 Jan; 191():296-301. PubMed ID: 29045931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode.
    Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S
    Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of novel graphene sponge for high performance capacitive deionization.
    Xu X; Pan L; Liu Y; Lu T; Sun Z; Chua DH
    Sci Rep; 2015 Feb; 5():8458. PubMed ID: 25675835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization.
    El-Deen AG; Boom RM; Kim HY; Duan H; Chan-Park MB; Choi JH
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25313-25. PubMed ID: 27589373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization.
    Cao J; Wang Y; Chen C; Yu F; Ma J
    J Colloid Interface Sci; 2018 May; 518():69-75. PubMed ID: 29438866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced electrochemical and capacitive deionization performance of metal organic framework/holey graphene composite electrodes.
    Feng J; Liu L; Meng Q
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):447-458. PubMed ID: 32896674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Channel-structured graphene as efficient electrodes for capacitive deionization.
    Chang L; Hang Hu Y
    J Colloid Interface Sci; 2019 Mar; 538():420-425. PubMed ID: 30530079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity.
    Li Y; Kim J; Wang J; Liu NL; Bando Y; Alshehri AA; Yamauchi Y; Hou CH; Wu KC
    Nanoscale; 2018 Aug; 10(31):14852-14859. PubMed ID: 29869671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite Graphene-Containing Porous Materials from Carbon for Capacitive Deionization of Water.
    Bakhia T; Khamizov RK; Bavizhev ZR; Bavizhev MD; Konov MA; Kozlov DA; Tikhonova SA; Maslakov KI; Ashurov MS; Melezhik AV; Kurnosov DA; Burakov AE; Tkachev AG
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32512896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced capacitive deionization performance of graphene by nitrogen doping.
    Xu X; Pan L; Liu Y; Lu T; Sun Z
    J Colloid Interface Sci; 2015 May; 445():143-150. PubMed ID: 25617614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontiers of carbon materials as capacitive deionization electrodes.
    Li Y; Chen N; Li Z; Shao H; Qu L
    Dalton Trans; 2020 Apr; 49(16):5006-5014. PubMed ID: 32239006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconnected Graphene Hollow Shells for High-Performance Capacitive Deionization.
    Zhu Y; Zhang G; Xu C; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29706-29716. PubMed ID: 32502337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-carbon 2D heterostructures with hierarchically-porous P,N-doped layered architecture for capacitive deionization.
    Guo J; Xu X; Hill JP; Wang L; Dang J; Kang Y; Li Y; Guan W; Yamauchi Y
    Chem Sci; 2021 Aug; 12(30):10334-10340. PubMed ID: 34377418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designed assembly of Ni/MAX (Ti
    Bharath G; Hai A; Rambabu K; Pazhanivel T; Hasan SW; Banat F
    Chemosphere; 2021 Mar; 266():129048. PubMed ID: 33248725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.