These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 26643332)
1. Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-Lactamase GIM-1. Skagseth S; Carlsen TJ; Bjerga GE; Spencer J; Samuelsen Ø; Leiros HK Antimicrob Agents Chemother; 2016 Feb; 60(2):990-1002. PubMed ID: 26643332 [TBL] [Abstract][Full Text] [Related]
2. The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop. Palacios AR; Mojica MF; Giannini E; Taracila MA; Bethel CR; Alzari PM; Otero LH; Klinke S; Llarrull LI; Bonomo RA; Vila AJ Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30348667 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution. LaCuran AE; Pegg KM; Liu EM; Bethel CR; Ai N; Welsh WJ; Bonomo RA; Oelschlaeger P Antimicrob Agents Chemother; 2015 Dec; 59(12):7299-307. PubMed ID: 26369960 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. Zhang H; Hao Q FASEB J; 2011 Aug; 25(8):2574-82. PubMed ID: 21507902 [TBL] [Abstract][Full Text] [Related]
6. His224 alters the R2 drug binding site and Phe218 influences the catalytic efficiency of the metallo-β-lactamase VIM-7. Leiros HK; Skagseth S; Edvardsen KS; Lorentzen MS; Bjerga GE; Leiros I; Samuelsen Ø Antimicrob Agents Chemother; 2014 Aug; 58(8):4826-36. PubMed ID: 24913158 [TBL] [Abstract][Full Text] [Related]
7. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. Brown NG; Shanker S; Prasad BV; Palzkill T J Biol Chem; 2009 Nov; 284(48):33703-12. PubMed ID: 19812041 [TBL] [Abstract][Full Text] [Related]
8. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M β-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Patel MP; Hu L; Stojanoski V; Sankaran B; Prasad BVV; Palzkill T Biochemistry; 2017 Jul; 56(27):3443-3453. PubMed ID: 28613873 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase. Chiou J; Leung TY; Chen S Antimicrob Agents Chemother; 2014 Sep; 58(9):5372-8. PubMed ID: 24982075 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the mobile metallo-β-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157. Leiros HK; Borra PS; Brandsdal BO; Edvardsen KS; Spencer J; Walsh TR; Samuelsen O Antimicrob Agents Chemother; 2012 Aug; 56(8):4341-53. PubMed ID: 22664968 [TBL] [Abstract][Full Text] [Related]
11. Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa. Barnes MD; Taracila MA; Rutter JD; Bethel CR; Galdadas I; Hujer AM; Caselli E; Prati F; Dekker JP; Papp-Wallace KM; Haider S; Bonomo RA mBio; 2018 Dec; 9(6):. PubMed ID: 30538183 [No Abstract] [Full Text] [Related]
12. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. Mehta SC; Furey IM; Pemberton OA; Boragine DM; Chen Y; Palzkill T J Biol Chem; 2021; 296():100155. PubMed ID: 33273017 [TBL] [Abstract][Full Text] [Related]
13. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
14. Structural and computational investigations of VIM-7: insights into the substrate specificity of vim metallo-β-lactamases. Borra PS; Leiros HK; Ahmad R; Spencer J; Leiros I; Walsh TR; Sundsfjord A; Samuelsen O J Mol Biol; 2011 Aug; 411(1):174-89. PubMed ID: 21645522 [TBL] [Abstract][Full Text] [Related]
15. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii. Shakibaie MR; Azizi O; Shahcheraghi F Infect Genet Evol; 2017 Jul; 51():118-126. PubMed ID: 28336429 [TBL] [Abstract][Full Text] [Related]
16. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. Petrosino JF; Palzkill T J Bacteriol; 1996 Apr; 178(7):1821-8. PubMed ID: 8606154 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of AmpC beta-lactamase through a destabilizing interaction in the active site. Trehan I; Beadle BM; Shoichet BK Biochemistry; 2001 Jul; 40(27):7992-9. PubMed ID: 11434768 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Borgianni L; Vandenameele J; Matagne A; Bini L; Bonomo RA; Frère JM; Rossolini GM; Docquier JD Antimicrob Agents Chemother; 2010 Aug; 54(8):3197-204. PubMed ID: 20498317 [TBL] [Abstract][Full Text] [Related]
19. A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. Stojanoski V; Chow DC; Hu L; Sankaran B; Gilbert HF; Prasad BV; Palzkill T J Biol Chem; 2015 Apr; 290(16):10382-94. PubMed ID: 25713062 [TBL] [Abstract][Full Text] [Related]