These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 26643659)
1. Exploring different strategies for imbalanced ADME data problem: case study on Caco-2 permeability modeling. Pham-The H; Casañola-Martin G; Garrigues T; Bermejo M; González-Álvarez I; Nguyen-Hai N; Cabrera-Pérez MÁ; Le-Thi-Thu H Mol Divers; 2016 Feb; 20(1):93-109. PubMed ID: 26643659 [TBL] [Abstract][Full Text] [Related]
2. In Silico Prediction of Blood-Brain Barrier Permeability of Compounds by Machine Learning and Resampling Methods. Wang Z; Yang H; Wu Z; Wang T; Li W; Tang Y; Liu G ChemMedChem; 2018 Oct; 13(20):2189-2201. PubMed ID: 30110511 [TBL] [Abstract][Full Text] [Related]
3. Clinical Decision Support Systems: From the Perspective of Small and Imbalanced Data Set. Par OE; Akcapinar Sezer E; Sever H Stud Health Technol Inform; 2019 Jul; 262():344-347. PubMed ID: 31349338 [TBL] [Abstract][Full Text] [Related]
4. In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling. Pham-The H; Cabrera-Pérez MÁ; Nam NH; Castillo-Garit JA; Rasulev B; Le-Thi-Thu H; Casañola-Martin GM Curr Top Med Chem; 2018; 18(26):2209-2229. PubMed ID: 30499410 [TBL] [Abstract][Full Text] [Related]
5. ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting. Wang NN; Dong J; Deng YH; Zhu MF; Wen M; Yao ZJ; Lu AP; Wang JB; Cao DS J Chem Inf Model; 2016 Apr; 56(4):763-73. PubMed ID: 27018227 [TBL] [Abstract][Full Text] [Related]
6. GHOST: Adjusting the Decision Threshold to Handle Imbalanced Data in Machine Learning. Esposito C; Landrum GA; Schneider N; Stiefl N; Riniker S J Chem Inf Model; 2021 Jun; 61(6):2623-2640. PubMed ID: 34100609 [TBL] [Abstract][Full Text] [Related]
7. Provisional classification and in silico study of biopharmaceutical system based on caco-2 cell permeability and dose number. Pham-The H; Garrigues T; Bermejo M; González-Álvarez I; Monteagudo MC; Cabrera-Pérez MÁ Mol Pharm; 2013 Jun; 10(6):2445-61. PubMed ID: 23675957 [TBL] [Abstract][Full Text] [Related]
8. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools. Tao L; Zhang P; Qin C; Chen SY; Zhang C; Chen Z; Zhu F; Yang SY; Wei YQ; Chen YZ Adv Drug Deliv Rev; 2015 Jun; 86():83-100. PubMed ID: 26037068 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy. Varotto G; Susi G; Tassi L; Gozzo F; Franceschetti S; Panzica F Front Neuroinform; 2021; 15():715421. PubMed ID: 34867255 [No Abstract] [Full Text] [Related]
10. Affinity and class probability-based fuzzy support vector machine for imbalanced data sets. Tao X; Li Q; Ren C; Guo W; He Q; Liu R; Zou J Neural Netw; 2020 Feb; 122():289-307. PubMed ID: 31739268 [TBL] [Abstract][Full Text] [Related]
11. Predicting Caco-2 permeability using support vector machine and chemistry development kit. Guangli M; Yiyu C J Pharm Pharm Sci; 2006; 9(2):210-21. PubMed ID: 16959190 [TBL] [Abstract][Full Text] [Related]
12. The Use of Rule-Based and QSPR Approaches in ADME Profiling: A Case Study on Caco-2 Permeability. Pham-The H; González-Álvarez I; Bermejo M; Garrigues T; Le-Thi-Thu H; Cabrera-Pérez MÁ Mol Inform; 2013 Jun; 32(5-6):459-79. PubMed ID: 27481666 [TBL] [Abstract][Full Text] [Related]
13. Classification of Imbalanced Data by Oversampling in Kernel Space of Support Vector Machines. Mathew J; Pang CK; Luo M; Leong WH IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4065-4076. PubMed ID: 29028213 [TBL] [Abstract][Full Text] [Related]
14. An approach for classification of highly imbalanced data using weighting and undersampling. Anand A; Pugalenthi G; Fogel GB; Suganthan PN Amino Acids; 2010 Nov; 39(5):1385-91. PubMed ID: 20411285 [TBL] [Abstract][Full Text] [Related]
15. Inverse free reduced universum twin support vector machine for imbalanced data classification. Moosaei H; Ganaie MA; Hladík M; Tanveer M Neural Netw; 2023 Jan; 157():125-135. PubMed ID: 36334534 [TBL] [Abstract][Full Text] [Related]
16. Ensemble-based model selection for imbalanced data to investigate the contributing factors to multiple fatality road crashes in Ghana. Yahaya M; Guo R; Jiang X; Bashir K; Matara C; Xu S Accid Anal Prev; 2021 Mar; 151():105851. PubMed ID: 33383521 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine. Wang KF; An J; Wei Z; Cui C; Ma XH; Ma C; Bao HQ Front Bioeng Biotechnol; 2021; 9():802712. PubMed ID: 35127672 [TBL] [Abstract][Full Text] [Related]
18. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. Eitrich T; Kless A; Druska C; Meyer W; Grotendorst J J Chem Inf Model; 2007; 47(1):92-103. PubMed ID: 17238253 [TBL] [Abstract][Full Text] [Related]
19. Imbalanced learning: Improving classification of diabetic neuropathy from magnetic resonance imaging. Teh K; Armitage P; Tesfaye S; Selvarajah D; Wilkinson ID PLoS One; 2020; 15(12):e0243907. PubMed ID: 33320890 [TBL] [Abstract][Full Text] [Related]
20. Distribution-Sensitive Unbalanced Data Oversampling Method for Medical Diagnosis. Han W; Huang Z; Li S; Jia Y J Med Syst; 2019 Jan; 43(2):39. PubMed ID: 30631957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]