These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 26643764)
1. Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize. Kebede AZ; Woldemariam T; Reid LM; Harris LJ Theor Appl Genet; 2016 Jan; 129(1):17-29. PubMed ID: 26643764 [TBL] [Abstract][Full Text] [Related]
2. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. Gaikpa DS; Kessel B; Presterl T; Ouzunova M; Galiano-Carneiro AL; Mayer M; Melchinger AE; Schön CC; Miedaner T Theor Appl Genet; 2021 Mar; 134(3):793-805. PubMed ID: 33274402 [TBL] [Abstract][Full Text] [Related]
3. Low validation rate of quantitative trait loci for Gibberella ear rot resistance in European maize. Brauner PC; Melchinger AE; Schrag TA; Utz HF; Schipprack W; Kessel B; Ouzunova M; Miedaner T Theor Appl Genet; 2017 Jan; 130(1):175-186. PubMed ID: 27709251 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
5. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Ali ML; Taylor JH; Jie L; Sun G; William M; Kasha KJ; Reid LM; Pauls KP Genome; 2005 Jun; 48(3):521-33. PubMed ID: 16121248 [TBL] [Abstract][Full Text] [Related]
6. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Ma C; Ma X; Yao L; Liu Y; Du F; Yang X; Xu M Theor Appl Genet; 2017 Aug; 130(8):1723-1734. PubMed ID: 28555262 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide association study and molecular marker development for susceptibility to Gibberella ear rot in maize. Zhou G; Ma L; Zhao C; Xie F; Xu Y; Wang Q; Hao D; Gao X Theor Appl Genet; 2024 Sep; 137(10):222. PubMed ID: 39276212 [TBL] [Abstract][Full Text] [Related]
8. Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Han S; Utz HF; Liu W; Schrag TA; Stange M; Würschum T; Miedaner T; Bauer E; Schön CC; Melchinger AE Theor Appl Genet; 2016 Feb; 129(2):431-44. PubMed ID: 26660464 [TBL] [Abstract][Full Text] [Related]
9. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). Yuan J; Liakat Ali M; Taylor J; Liu J; Sun G; Liu W; Masilimany P; Gulati-Sakhuja A; Pauls KP Theor Appl Genet; 2008 Feb; 116(4):465-79. PubMed ID: 18074115 [TBL] [Abstract][Full Text] [Related]
10. Mapping and Validation of a Stable Quantitative Trait Locus Conferring Maize Resistance to Gibberella Ear Rot. Zhou G; Li S; Ma L; Wang F; Jiang F; Sun Y; Ruan X; Cao Y; Wang Q; Zhang Y; Fan X; Gao X Plant Dis; 2021 Jul; 105(7):1984-1991. PubMed ID: 33616427 [TBL] [Abstract][Full Text] [Related]
11. Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Zhang D; Liu Y; Guo Y; Yang Q; Ye J; Chen S; Xu M Theor Appl Genet; 2012 Feb; 124(3):585-96. PubMed ID: 22048640 [TBL] [Abstract][Full Text] [Related]
12. A Combination of QTL Mapping and GradedPool-Seq to Dissect Genetic Complexity for Gibberella Ear Rot Resistance in Maize Using an IBM Syn10 DH Population. Yuan G; Li Y; He D; Shi J; Yang Y; Du J; Zou C; Ma L; Pan G; Shen Y Plant Dis; 2023 Apr; 107(4):1115-1121. PubMed ID: 36131495 [TBL] [Abstract][Full Text] [Related]
13. Genome-Wide Association Study Discovers Novel Germplasm Resources and Genetic Loci with Resistance to Gibberella Ear Rot Caused by Yuan G; He D; Shi J; Li Y; Yang Y; Du J; Zou C; Ma L; Gao S; Pan G; Shen Y Phytopathology; 2023 Jul; 113(7):1317-1324. PubMed ID: 36721376 [TBL] [Abstract][Full Text] [Related]
14. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065 [TBL] [Abstract][Full Text] [Related]
15. A new QTL for resistance to Fusarium ear rot in maize. Li ZM; Ding JQ; Wang RX; Chen JF; Sun XD; Chen W; Song WB; Dong HF; Dai XD; Xia ZL; Wu JY J Appl Genet; 2011 Nov; 52(4):403-6. PubMed ID: 21559994 [TBL] [Abstract][Full Text] [Related]
16. A major QTL for resistance to Gibberella stalk rot in maize. Yang Q; Yin G; Guo Y; Zhang D; Chen S; Xu M Theor Appl Genet; 2010 Aug; 121(4):673-87. PubMed ID: 20401458 [TBL] [Abstract][Full Text] [Related]
17. QTLs for Resistance to Fusarium Ear Rot in a Multiparent Advanced Generation Intercross (MAGIC) Maize Population. Butrón A; Santiago R; Cao A; Samayoa LF; Malvar RA Plant Dis; 2019 May; 103(5):897-904. PubMed ID: 30856072 [TBL] [Abstract][Full Text] [Related]
18. Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm. Chen J; Shrestha R; Ding J; Zheng H; Mu C; Wu J; Mahuku G G3 (Bethesda); 2016 Dec; 6(12):3803-3815. PubMed ID: 27742723 [TBL] [Abstract][Full Text] [Related]
19. Genetic analysis of cob resistance to F. verticillioides: another step towards the protection of maize from ear rot. Mu C; Gao J; Zhou Z; Wang Z; Sun X; Zhang X; Dong H; Han Y; Li X; Wu Y; Song Y; Ma P; Dong C; Chen J; Wu J Theor Appl Genet; 2019 Apr; 132(4):1049-1059. PubMed ID: 30535634 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]