BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26643883)

  • 1. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators.
    Jabur GN; Sidhu K; Willcox TW; Mitchell SJ
    Perfusion; 2016 Jul; 31(5):409-17. PubMed ID: 26643883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An In-Vitro Study Comparing the GME Handling of Two Contemporary Oxygenators.
    Gisnarian CJ; Hedman A; Shann KG
    J Extra Corpor Technol; 2017 Dec; 49(4):262-272. PubMed ID: 29302117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter.
    Stehouwer MC; Legg KR; de Vroege R; Kelder JC; Hofman E; de Mol BA; Bruins P
    Perfusion; 2017 Mar; 32(2):118-125. PubMed ID: 27516417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Oxygenator FX05.
    Horton SB; Donath S; Thuys CA; Bennett MJ; Augustin SL; Horton AM; Schultz BJ; Bottrell SJ; Konstantinov I; d'Udekem Y; Brizard C
    ASAIO J; 2011; 57(6):522-6. PubMed ID: 21970981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced embolic load during clinical cardiopulmonary bypass using a 20 micron arterial filter.
    Jabur GN; Willcox TW; Zahidani SH; Sidhu K; Mitchell SJ
    Perfusion; 2014 May; 29(3):219-25. PubMed ID: 24009263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter.
    Salavitabar A; Qiu F; Kunselman A; Ündar A
    Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
    Guan Y; Palanzo D; Kunselman A; Undar A
    Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use.
    Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P
    Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach.
    Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A
    Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Comparison of Pediatric Oxygenators With and Without Integrated Arterial Filters in Maintaining Optimal Hemodynamic Stability and Managing Gaseous Microemboli.
    Moroi M; Force M; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2018 Apr; 42(4):420-431. PubMed ID: 29377185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass.
    Marupudi N; Wang S; Canêo LF; Jatene FB; Kunselman AR; Undar A
    Braz J Cardiovasc Surg; 2016; 31(5):343-350. PubMed ID: 27982342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Gross Air Embolization from Cardiopulmonary Bypass Circuits with Integrated Arterial Line Filters: A Comparison of Circuit Designs.
    Reagor JA; Holt DW
    J Extra Corpor Technol; 2016 Mar; 48(1):19-22. PubMed ID: 27134304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Oxygenator Size on Air Removal Characteristics: A Clinical Evaluation.
    Stehouwer MC; de Vroege R; Kelder JC; Hofman FN; de Mol BA; Bruins P
    ASAIO J; 2016; 62(4):421-6. PubMed ID: 26919180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass.
    Milano AD; Dodonov M; Onorati F; Menon T; Gottin L; Malerba G; Mazzucco A; Faggian G
    Interact Cardiovasc Thorac Surg; 2013 Nov; 17(5):811-7. PubMed ID: 23842758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-arterial filter gaseous microemboli activity of five integral cardiotomy reservoirs during venting: an in vitro study.
    Myers GJ; Voorhees C; Haynes R; Eke B
    J Extra Corpor Technol; 2009 Mar; 41(1):20-7. PubMed ID: 19361028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.
    Qiu F; Peng S; Kunselman A; Ündar A
    Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical gaseous microemboli assessment of an oxygenator with integral arterial filter in the pediatric population.
    Preston TJ; Gomez D; Olshove VF; Phillips A; Galantowicz M
    J Extra Corpor Technol; 2009 Dec; 41(4):226-30. PubMed ID: 20092077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can the oxygenator screen filter reduce gaseous microemboli?
    Johagen D; Appelblad M; Svenmarker S
    J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.