These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. An integrated widefield imaging and spectroscopy system for contrast-enhanced, image-guided resection of tumors. Mohs AM; Mancini MC; Provenzale JM; Saba CF; Cornell KK; Howerth EW; Nie S IEEE Trans Biomed Eng; 2015 May; 62(5):1416-24. PubMed ID: 25585410 [TBL] [Abstract][Full Text] [Related]
43. 5-Aminolevulinic acid fluorescence-guided surgery for spinal meningioma. Muroi C; Fandino J; Coluccia D; Berkmann S; Fathi AR; Landolt H World Neurosurg; 2013; 80(1-2):223.e1-3. PubMed ID: 23247024 [TBL] [Abstract][Full Text] [Related]
44. New intraoperative imaging technologies: Innovating the surgeon's eye toward surgical precision. Mascagni P; Longo F; Barberio M; Seeliger B; Agnus V; Saccomandi P; Hostettler A; Marescaux J; Diana M J Surg Oncol; 2018 Aug; 118(2):265-282. PubMed ID: 30076724 [TBL] [Abstract][Full Text] [Related]
45. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. Stummer W; Tonn JC; Mehdorn HM; Nestler U; Franz K; Goetz C; Bink A; Pichlmeier U; J Neurosurg; 2011 Mar; 114(3):613-23. PubMed ID: 20397896 [TBL] [Abstract][Full Text] [Related]
47. Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients. Hickmann AK; Nadji-Ohl M; Hopf NJ J Neurooncol; 2015 Mar; 122(1):151-60. PubMed ID: 25557106 [TBL] [Abstract][Full Text] [Related]
48. The clinical trial on the safety and effectiveness of the photodynamic diagnosis of non-muscle-invasive bladder cancer using fluorescent light-guided cystoscopy after oral administration of 5-aminolevulinic acid (5-ALA). Inoue K; Matsuyama H; Fujimoto K; Hirao Y; Watanabe H; Ozono S; Oyama M; Ueno M; Sugimura Y; Shiina H; Mimata H; Azuma H; Nagase Y; Matsubara A; Ito YM; Shuin T Photodiagnosis Photodyn Ther; 2016 Mar; 13():91-96. PubMed ID: 26751700 [TBL] [Abstract][Full Text] [Related]
49. Cadherin 13 overexpression as an important factor related to the absence of tumor fluorescence in 5-aminolevulinic acid-guided resection of glioma. Suzuki T; Wada S; Eguchi H; Adachi J; Mishima K; Matsutani M; Nishikawa R; Nishiyama M J Neurosurg; 2013 Nov; 119(5):1331-9. PubMed ID: 24010971 [TBL] [Abstract][Full Text] [Related]
50. Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Mieog JS; Hutteman M; van der Vorst JR; Kuppen PJ; Que I; Dijkstra J; Kaijzel EL; Prins F; Löwik CW; Smit VT; van de Velde CJ; Vahrmeijer AL Breast Cancer Res Treat; 2011 Aug; 128(3):679-89. PubMed ID: 20821347 [TBL] [Abstract][Full Text] [Related]
52. Image-guided tumor surgery: The emerging role of nanotechnology. Wojtynek NE; Mohs AM Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1624. PubMed ID: 32162485 [TBL] [Abstract][Full Text] [Related]
53. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Hernot S; van Manen L; Debie P; Mieog JSD; Vahrmeijer AL Lancet Oncol; 2019 Jul; 20(7):e354-e367. PubMed ID: 31267970 [TBL] [Abstract][Full Text] [Related]
54. Regulatory Aspects of Optical Methods and Exogenous Targets for Cancer Detection. Tummers WS; Warram JM; Tipirneni KE; Fengler J; Jacobs P; Shankar L; Henderson L; Ballard B; Pfefer TJ; Pogue BW; Weichert JP; Bouvet M; Sorger J; Contag CH; Frangioni JV; Tweedle MF; Basilion JP; Gambhir SS; Rosenthal EL Cancer Res; 2017 May; 77(9):2197-2206. PubMed ID: 28428283 [TBL] [Abstract][Full Text] [Related]
55. Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. Diaz RJ; Dios RR; Hattab EM; Burrell K; Rakopoulos P; Sabha N; Hawkins C; Zadeh G; Rutka JT; Cohen-Gadol AA J Neurosurg; 2015 Jun; 122(6):1360-9. PubMed ID: 25839919 [TBL] [Abstract][Full Text] [Related]
56. Review of clinical trials in intraoperative molecular imaging during cancer surgery. Lee JYK; Cho SS; Stummer W; Tanyi JL; Vahrmeijer AL; Rosenthal E; Smith B; Henderson E; Roberts DW; Lee A; Hadjipanayis CG; Bruce JN; Newman JG; Singhal S J Biomed Opt; 2019 Dec; 24(12):1-8. PubMed ID: 31808327 [TBL] [Abstract][Full Text] [Related]
57. Nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging allows precise image-guided tumor-removal surgery. Hu Z; Chi C; Liu M; Guo H; Zhang Z; Zeng C; Ye J; Wang J; Tian J; Yang W; Xu W Nanomedicine; 2017 May; 13(4):1323-1331. PubMed ID: 28115248 [TBL] [Abstract][Full Text] [Related]
58. Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW. Warram JM; de Boer E; Korb M; Hartman Y; Kovar J; Markert JM; Gillespie GY; Rosenthal EL Br J Neurosurg; 2015; 29(6):850-8. PubMed ID: 26073144 [TBL] [Abstract][Full Text] [Related]
59. [Antibodies, tools of choice for fluorescence-guided surgery]. Pèlegrin A; Gutowski M; Cailler F Med Sci (Paris); 2019 Dec; 35(12):1066-1071. PubMed ID: 31903919 [TBL] [Abstract][Full Text] [Related]
60. Fluorescence image-guided surgery and repetitive Photodynamic Therapy in brain metastatic malignant melanoma. Zilidis G; Aziz F; Telara S; Eljamel MS Photodiagnosis Photodyn Ther; 2008 Dec; 5(4):264-6. PubMed ID: 19356668 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]