These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26644414)

  • 1. Extending gene ontology with gene association networks.
    Peng J; Wang T; Wang J; Wang Y; Chen J
    Bioinformatics; 2016 Apr; 32(8):1185-94. PubMed ID: 26644414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks.
    Peng J; Uygun S; Kim T; Wang Y; Rhee SY; Chen J
    BMC Bioinformatics; 2015 Feb; 16():44. PubMed ID: 25886899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying term relations cross different gene ontology categories.
    Peng J; Wang H; Lu J; Hui W; Wang Y; Shang X
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):573. PubMed ID: 29297309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of molecular network data reconstructs Gene Ontology.
    Gligorijević V; Janjić V; Pržulj N
    Bioinformatics; 2014 Sep; 30(17):i594-600. PubMed ID: 25161252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SANA NetGO: a combinatorial approach to using Gene Ontology (GO) terms to score network alignments.
    Hayes WB; Mamano N
    Bioinformatics; 2018 Apr; 34(8):1345-1352. PubMed ID: 29228175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying cross-category relations in gene ontology and constructing genome-specific term association networks.
    Peng J; Chen J; Wang Y
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S15. PubMed ID: 23368677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. InteGO2: a web tool for measuring and visualizing gene semantic similarities using Gene Ontology.
    Peng J; Li H; Liu Y; Juan L; Jiang Q; Wang Y; Chen J
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):530. PubMed ID: 27586009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Information in Biological Ontologies and Molecular Networks to Infer Novel Terms.
    Li L; Yip KY
    Sci Rep; 2016 Dec; 6():39237. PubMed ID: 27976738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Ontology analysis in multiple gene clusters under multiple hypothesis testing framework.
    Zhong S; Xie D
    Artif Intell Med; 2007 Oct; 41(2):105-15. PubMed ID: 17913480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method to measure the semantic similarity of GO terms.
    Wang JZ; Du Z; Payattakool R; Yu PS; Chen CF
    Bioinformatics; 2007 May; 23(10):1274-81. PubMed ID: 17344234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NegGOA: negative GO annotations selection using ontology structure.
    Fu G; Wang J; Yang B; Yu G
    Bioinformatics; 2016 Oct; 32(19):2996-3004. PubMed ID: 27318205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
    Cheng L; Jiang Y; Ju H; Sun J; Peng J; Zhou M; Hu Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):919. PubMed ID: 29363423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TopoICSim: a new semantic similarity measure based on gene ontology.
    Ehsani R; Drabløs F
    BMC Bioinformatics; 2016 Jul; 17(1):296. PubMed ID: 27473391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additional gene ontology structure for improved biological reasoning.
    Myhre S; Tveit H; Mollestad T; Laegreid A
    Bioinformatics; 2006 Aug; 22(16):2020-7. PubMed ID: 16787968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mLASSO-Hum: A LASSO-based interpretable human-protein subcellular localization predictor.
    Wan S; Mak MW; Kung SY
    J Theor Biol; 2015 Oct; 382():223-34. PubMed ID: 26164062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative approach for measuring semantic similarities using gene ontology.
    Peng J; Li H; Jiang Q; Wang Y; Chen J
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S8. PubMed ID: 25559943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.