BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26644471)

  • 1. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum.
    Moxley MA; Beard DA; Bazil JN
    J Biol Chem; 2016 Feb; 291(6):2712-30. PubMed ID: 26644471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pH-dependent kinetic model of dihydrolipoamide dehydrogenase from multiple organisms.
    Moxley MA; Beard DA; Bazil JN
    Biophys J; 2014 Dec; 107(12):2993-3007. PubMed ID: 25517164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction between lipoamide dehydrogenase and the peripheral-component-binding domain from the Azotobacter vinelandii pyruvate dehydrogenase complex.
    Westphal AH; Fabisz-Kijowska A; Kester H; Obels PP; de Kok A
    Eur J Biochem; 1995 Dec; 234(3):861-70. PubMed ID: 8575446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.
    Vienozinskis J; Butkus A; Cenas N; Kulys J
    Biochem J; 1990 Jul; 269(1):101-5. PubMed ID: 2375745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipoamide dehydrogenase from Escherichia coli. Steady-state kinetics of the physiological reaction.
    Sahlman L; Williams CH
    J Biol Chem; 1989 May; 264(14):8039-45. PubMed ID: 2498307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pig heart lipoamide dehydrogenase: solvent equilibrium and kinetic isotope effects.
    Leichus BN; Blanchard JS
    Biochemistry; 1992 Mar; 31(12):3065-72. PubMed ID: 1554695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase.
    Gazaryan IG; Krasnikov BF; Ashby GA; Thorneley RN; Kristal BS; Brown AM
    J Biol Chem; 2002 Mar; 277(12):10064-72. PubMed ID: 11744691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction.
    Wilkinson KD; Williams CH
    J Biol Chem; 1981 Mar; 256(5):2307-14. PubMed ID: 7007381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Kinetic properties of lipoamide dehydrogenase of the oxoglutarate dehydrogenase complex of the human heart].
    Ostrovtsova SA; Strumilo SA
    Vopr Med Khim; 1991; 37(1):70-1. PubMed ID: 1858346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli.
    de Graef MR; Alexeeva S; Snoep JL; Teixeira de Mattos MJ
    J Bacteriol; 1999 Apr; 181(8):2351-7. PubMed ID: 10197995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of dihydrolipoyl dehydrogenase (E3) and a novel E3-binding protein in the NADH sensitivity of the pyruvate dehydrogenase complex from anaerobic mitochondria of the parasitic nematode, Ascaris suum.
    Harmych S; Arnette R; Komuniecki R
    Mol Biochem Parasitol; 2002; 125(1-2):135-46. PubMed ID: 12467981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salts- induced oxidase activity of lipoamide dehydrogenase from pig heart.
    Nakamura M; Yamazaki I
    Eur J Biochem; 1979 May; 96(2):417-22. PubMed ID: 37086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the catalytic mechanism for mitochondrial malate dehydrogenase.
    Dasika SK; Vinnakota KC; Beard DA
    Biophys J; 2015 Jan; 108(2):408-19. PubMed ID: 25606688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial hydrogen peroxide production as determined by the pyridine nucleotide pool and its redox state.
    Kareyeva AV; Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2012 Oct; 1817(10):1879-85. PubMed ID: 22503830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic study of the alpha-keto acid dehydrogenase complexes from pig heart mitochondria.
    Hamada M; Koike K; Nakaula Y; Hiraoka T; Koike M
    J Biochem; 1975 May; 77(5):1047-56. PubMed ID: 169232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent substrate preference of pig heart lipoamide dehydrogenase varies with oligomeric state: response to mitochondrial matrix acidification.
    Klyachko NL; Shchedrina VA; Efimov AV; Kazakov SV; Gazaryan IG; Kristal BS; Brown AM
    J Biol Chem; 2005 Apr; 280(16):16106-14. PubMed ID: 15710613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. I. Kinetic mechanism and pH dependence of kinetic parameters, coenzyme binding and substrate inhibition.
    Alvarez JA; Gelpí JL; Johnsen K; Bernard N; Delcour J; Clarke AR; Holbrook JJ; Cortés A
    Eur J Biochem; 1997 Feb; 244(1):203-12. PubMed ID: 9063465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of mammalian pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes: analysis of protein X involvement and interaction of homologous and heterologous dihydrolipoamide dehydrogenases.
    Sanderson SJ; Khan SS; McCartney RG; Miller C; Lindsay JG
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):109-16. PubMed ID: 8870656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations.
    Brautigam CA; Chuang JL; Tomchick DR; Machius M; Chuang DT
    J Mol Biol; 2005 Jul; 350(3):543-52. PubMed ID: 15946682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.