These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 26644578)
1. Molecular mechanisms underlying the exceptional adaptations of batoid fins. Nakamura T; Klomp J; Pieretti J; Schneider I; Gehrke AR; Shubin NH Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15940-5. PubMed ID: 26644578 [TBL] [Abstract][Full Text] [Related]
2. The role of Barry SN; Crow KD Evodevo; 2017; 8():24. PubMed ID: 29214009 [TBL] [Abstract][Full Text] [Related]
3. The evolution of underwater flight: The redistribution of pectoral fin rays, in manta rays and their relatives (Myliobatidae). Hall KC; Hundt PJ; Swenson JD; Summers AP; Crow KD J Morphol; 2018 Aug; 279(8):1155-1170. PubMed ID: 29878395 [TBL] [Abstract][Full Text] [Related]
4. Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea). Huang W; Hongjamrassilp W; Jung JY; Hastings PA; Lubarda VA; McKittrick J Acta Biomater; 2017 Mar; 51():393-407. PubMed ID: 28069513 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of pectoral fin outgrowth in zebrafish development. Yano T; Abe G; Yokoyama H; Kawakami K; Tamura K Development; 2012 Aug; 139(16):2916-25. PubMed ID: 22791899 [TBL] [Abstract][Full Text] [Related]
6. Re-evaluation of batoid pectoral morphology reveals novel patterns of diversity among major lineages. Martinez CM; Rohlf FJ; Frisk MG J Morphol; 2016 Apr; 277(4):482-93. PubMed ID: 26869186 [TBL] [Abstract][Full Text] [Related]
7. The little skate genome and the evolutionary emergence of wing-like fins. Marlétaz F; de la Calle-Mustienes E; Acemel RD; Paliou C; Naranjo S; Martínez-García PM; Cases I; Sleight VA; Hirschberger C; Marcet-Houben M; Navon D; Andrescavage A; Skvortsova K; Duckett PE; González-Rajal Á; Bogdanovic O; Gibcus JH; Yang L; Gallardo-Fuentes L; Sospedra I; Lopez-Rios J; Darbellay F; Visel A; Dekker J; Shubin N; Gabaldón T; Nakamura T; Tena JJ; Lupiáñez DG; Rokhsar DS; Gómez-Skarmeta JL Nature; 2023 Apr; 616(7957):495-503. PubMed ID: 37046085 [TBL] [Abstract][Full Text] [Related]
8. Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Ahn D; Ho RK Dev Biol; 2008 Oct; 322(1):220-33. PubMed ID: 18638469 [TBL] [Abstract][Full Text] [Related]
9. Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): explaining phylogenetic variation with geometric morphometrics. Franklin O; Palmer C; Dyke G J Morphol; 2014 Oct; 275(10):1173-86. PubMed ID: 24797832 [TBL] [Abstract][Full Text] [Related]
10. Embryonic origin and serial homology of gill arches and paired fins in the skate, Sleight VA; Gillis JA Elife; 2020 Nov; 9():. PubMed ID: 33198887 [TBL] [Abstract][Full Text] [Related]
11. Synchronized swimming: coordination of pelvic and pectoral fins during augmented punting by the freshwater stingray Potamotrygon orbignyi. Macesic LJ; Mulvaney D; Blevins EL Zoology (Jena); 2013 Jun; 116(3):144-50. PubMed ID: 23477972 [TBL] [Abstract][Full Text] [Related]
12. Batoid locomotion: effects of speed on pectoral fin deformation in the little skate, Di Santo V; Blevins EL; Lauder GV J Exp Biol; 2017 Feb; 220(Pt 4):705-712. PubMed ID: 27965272 [TBL] [Abstract][Full Text] [Related]
13. Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. Schneider I; Aneas I; Gehrke AR; Dahn RD; Nobrega MA; Shubin NH Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12782-6. PubMed ID: 21765002 [TBL] [Abstract][Full Text] [Related]
14. Expression of Hoxa-11 and Hoxa-13 in the pectoral fin of a basal ray-finned fish, Polyodon spathula: implications for the origin of tetrapod limbs. Metscher BD; Takahashi K; Crow K; Amemiya C; Nonaka DF; Wagner GP Evol Dev; 2005; 7(3):186-95. PubMed ID: 15876191 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design. Russo RS; Blemker SS; Fish FE; Bart-Smith H Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094 [TBL] [Abstract][Full Text] [Related]
16. The Polycomb group protein Ring1b is essential for pectoral fin development. van der Velden YU; Wang L; van Lohuizen M; Haramis AP Development; 2012 Jun; 139(12):2210-20. PubMed ID: 22619390 [TBL] [Abstract][Full Text] [Related]
17. Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi. Blevins EL; Lauder GV J Exp Biol; 2012 Sep; 215(Pt 18):3231-41. PubMed ID: 22693031 [TBL] [Abstract][Full Text] [Related]
18. Loss of fish actinotrichia proteins and the fin-to-limb transition. Zhang J; Wagh P; Guay D; Sanchez-Pulido L; Padhi BK; Korzh V; Andrade-Navarro MA; Akimenko MA Nature; 2010 Jul; 466(7303):234-7. PubMed ID: 20574421 [TBL] [Abstract][Full Text] [Related]
19. Pdlim7 is required for maintenance of the mesenchymal/epidermal Fgf signaling feedback loop during zebrafish pectoral fin development. Camarata T; Snyder D; Schwend T; Klosowiak J; Holtrup B; Simon HG BMC Dev Biol; 2010 Oct; 10():104. PubMed ID: 20950450 [TBL] [Abstract][Full Text] [Related]
20. Developmental hourglass and heterochronic shifts in fin and limb development. Onimaru K; Tatsumi K; Tanegashima C; Kadota M; Nishimura O; Kuraku S Elife; 2021 Feb; 10():. PubMed ID: 33560225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]