These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26644671)

  • 1. Development and evaluation of a new telerehabilitation system based on VR technology using multisensory feedback for patients with stroke.
    Kato N; Tanaka T; Sugihara S; Shimizu K
    J Phys Ther Sci; 2015 Oct; 27(10):3185-90. PubMed ID: 26644671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial.
    Lloréns R; Noé E; Colomer C; Alcañiz M
    Arch Phys Med Rehabil; 2015 Mar; 96(3):418-425.e2. PubMed ID: 25448245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial.
    Kairy D; Veras M; Archambault P; Hernandez A; Higgins J; Levin MF; Poissant L; Raz A; Kaizer F
    Contemp Clin Trials; 2016 Mar; 47():49-53. PubMed ID: 26655433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telerehabilitation using virtual reality task can improve balance in patients with stroke.
    Cikajlo I; Rudolf M; Goljar N; Burger H; Matjačić Z
    Disabil Rehabil; 2012; 34(1):13-8. PubMed ID: 21864205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
    Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR
    J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Further Step to Develop Patient-Friendly Implementation Strategies for Virtual Reality-Based Rehabilitation in Patients With Acute Stroke.
    Lee M; Pyun SB; Chung J; Kim J; Eun SD; Yoon B
    Phys Ther; 2016 Oct; 96(10):1554-1564. PubMed ID: 27149961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study.
    Ding WL; Zheng YZ; Su YP; Li XL
    J Back Musculoskelet Rehabil; 2018; 31(4):611-621. PubMed ID: 29578471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proprioception rehabilitation training system for stroke patients using virtual reality technology.
    Kim SI; Song IH; Cho S; Kim IY; Ku J; Kang YJ; Jang DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4621-4. PubMed ID: 24110764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual environments for motor rehabilitation: review.
    Holden MK
    Cyberpsychol Behav; 2005 Jun; 8(3):187-211; discussion 212-9. PubMed ID: 15971970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system.
    Held JP; Ferrer B; Mainetti R; Steblin A; Hertler B; Moreno-Conde A; Dueñas A; Pajaro M; Parra-Calderón CL; Vargiu E; Josè Zarco M; Barrera M; Echevarria C; Jódar-Sánchez F; Luft AR; Borghese NA
    Eur J Phys Rehabil Med; 2018 Aug; 54(4):545-553. PubMed ID: 28949120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Virtual reality in upper extremity dysfunction: specific features of usage in acute stroke].
    Dolganov MV; Karpova MI
    Vopr Kurortol Fizioter Lech Fiz Kult; 2019; 96(5):19-28. PubMed ID: 31626156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.
    Kurzynski M; Jaskolska A; Marusiak J; Wolczowski A; Bierut P; Szumowski L; Witkowski J; Kisiel-Sajewicz K
    Comput Biol Med; 2017 Aug; 87():311-321. PubMed ID: 28641235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Home-based Upper Extremity Stroke Therapy Using a Multiuser Virtual Reality Environment: A Randomized Trial.
    Thielbar KO; Triandafilou KM; Barry AJ; Yuan N; Nishimoto A; Johnson J; Stoykov ME; Tsoupikova D; Kamper DG
    Arch Phys Med Rehabil; 2020 Feb; 101(2):196-203. PubMed ID: 31715140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality interventions for balance prevention and rehabilitation after musculoskeletal lower limb impairments in young up to middle-aged adults: A comprehensive review on used technology, balance outcome measures and observed effects.
    Vogt S; Skjæret-Maroni N; Neuhaus D; Baumeister J
    Int J Med Inform; 2019 Jun; 126():46-58. PubMed ID: 31029263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study.
    Prasertsakul T; Kaimuk P; Chinjenpradit W; Limroongreungrat W; Charoensuk W
    Biomed Eng Online; 2018 Sep; 17(1):124. PubMed ID: 30227884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of virtual reality proprioceptive rehabilitation system for stroke patients.
    Cho S; Ku J; Cho YK; Kim IY; Kang YJ; Jang DP; Kim SI
    Comput Methods Programs Biomed; 2014; 113(1):258-65. PubMed ID: 24183070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke.
    Aşkın A; Atar E; Koçyiğit H; Tosun A
    Somatosens Mot Res; 2018 Mar; 35(1):25-32. PubMed ID: 29529919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety and Feasibility of a First-Person View, Full-Body Interaction Game for Telerehabilitation Post-Stroke.
    Proffitt R; Warren J; Lange B; Chang CY
    Int J Telerehabil; 2018; 10(1):29-36. PubMed ID: 30147841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study.
    Chae SH; Kim Y; Lee KS; Park HS
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.